18 research outputs found

    Fractional Euler-Lagrange differential equations via Caputo derivatives

    Get PDF
    We review some recent results of the fractional variational calculus. Necessary optimality conditions of Euler-Lagrange type for functionals with a Lagrangian containing left and right Caputo derivatives are given. Several problems are considered: with fixed or free boundary conditions, and in presence of integral constraints that also depend on Caputo derivatives.Comment: This is a preprint of a paper whose final and definite form will appear as Chapter 9 of the book Fractional Dynamics and Control, D. Baleanu et al. (eds.), Springer New York, 2012, DOI:10.1007/978-1-4614-0457-6_9, in pres

    Variational Problems Involving a Caputo-Type Fractional Derivative

    Get PDF
    We study calculus of variations problems, where the Lagrange function depends on the Caputo-Katugampola fractional derivative. This type of fractional operator is a generalization of the Caputo and the Caputo–Hadamard fractional derivatives, with dependence on a real parameter ρ. We present sufficient and necessary conditions of first and second order to determine the extremizers of a functional. The cases of integral and holomonic constraints are also considered

    A Simple Accurate Method for Solving Fractional Variational and Optimal Control Problems

    No full text
    We develop a simple and accurate method to solve fractional variational and fractional optimal control problems with dependence on Caputo and Riemann–Liouville operators. Using known formulas for computing fractional derivatives of polynomials, we rewrite the fractional functional dynamical optimization problem as a classical static optimization problem. The method for classical optimal control problems is called Ritz’s method. Examples show that the proposed approach is more accurate than recent methods available in the literature. © 2016, Springer Science+Business Media New York
    corecore