7 research outputs found

    Chemical Defence in a Millipede: Evaluation and Characterization of Antimicrobial Activity of the Defensive Secretion from Pachyiulus hungaricus (Karsch, 1881) (Diplopoda, Julida, Julidae)

    Get PDF
    The chemical defence of the millipede Pachyiulus hungaricus is reported in the present paper, in which a chemical characterization is given and antimicrobial activity is determined. In total, independently of sex, 44 compounds were identified. All compounds belong to two groups: quinones and pentyl and hexyl esters of long-chain fatty acids. The relative abundances of quinones and non-quinones were 94.7% vs. 5.3% (males) and 87.3% vs. 12.7% (females), respectively. The two dominant quinones in both sexes were 2-methyl-1,4,-benzoquinone and 2-methoxy-3-methyl-1,4-benzoquinone. Antibacterial and antifungal activity of the defensive secretion was evaluated in vitro against seven bacterial strains and eight fungal species. With the aid of a dilution technique, the antimicrobial potential of the secretion and high sensitivity of all tested strains were confirmed. The lowest minimum concentrations of these compounds (0.20-0.25 mg/mL) were sufficient for inhibition of Aeromonas hydrophila, Listeria monocytogenes and Methicillin resistant Staphylococcus aureus (MRSA). The growth of eight tested fungal species was inhibited by slightly lower concentrations of the secretion, with Fusarium equisetias the most sensitive fungus and Aspergillus flavus as the most resistant. Values of MIC and MFC in the employed microdilution assay ranged from 0.10 to above 0.35 mg/m L. The given extract contains antimicrobial components potentially useful as therapeutic agents in the pharmaceutical and agricultural industries

    Calcium–axonemal microtubuli interactions underlie mechanism(s) of primary cilia morphological changes

    No full text
    We have used cell culture of astrocytes aligned within microchannels to investigate calcium effects on primary cilia morphology. In the absence of calcium and in the presence of flow of media (10 µL.s-1) the majority (90%) of primary cilia showed reversible bending with an average curvature of 2.1 ± 0.9 × 10-4 nm-1. When 1.0 mM calcium was present, 90% of cilia underwent bending. Forty percent of these cilia demonstrated strong irreversible bending, resulting in a final average curvature of 3.9 ± 1 × 10-4 nm-1, while 50% of cilia underwent bending similar to that observed during calcium-free flow. The average length of cilia was shifted toward shorter values (3.67 ± 0.34 µm) when exposed to excess calcium (1.0 mM), compared to media devoid of calcium (3.96 ± 0.26 µm). The number of primary cilia that became curved after calcium application was reduced when the cell culture was pre-incubated with 15 µM of the microtubule stabilizer, taxol, for 60 min prior to calcium application. Calcium caused single microtubules to curve at a concentration ˜1.0 mM in vitro, but at higher concentration (˜1.5 mM) multiple microtubule curving occurred. Additionally, calcium causes microtubule-associated protein-2 conformational changes and its dislocation from the microtubule wall at the location of microtubule curvature. A very small amount of calcium, that is 1.45 × 1011 times lower than the maximal capacity of TRPPs calcium channels, may cause gross morphological changes (curving) of primary cilia, while global cytosol calcium levels are expected to remain unchanged. These findings reflect the non-linear manner in which primary cilia may respond to calcium signaling, which in turn may influence the course of development of ciliopathies and cancer
    corecore