75 research outputs found

    Role of Polypyrimidine Tract Binding Protein in Mediating Internal Initiation of Translation of Interferon Regulatory Factor 2 RNA

    Get PDF
    BACKGROUND: Earlier we have reported translational control of interferon regulatory factor 2 (IRF2) by internal initiation (Dhar et al, Nucleic Acids Res, 2007). The results implied possible role of IRF2 in controlling the intricate balance of cellular gene expression under stress conditions in general. Here we have investigated the secondary structure of the Internal Ribosome Entry Site of IRF2 RNA and demonstrated the role of PTB protein in ribosome assembly to facilitate internal initiation. METHODOLOGY/PRINCIPAL FINDINGS: We have probed the putative secondary structure of the IRF2 5'UTR RNA using various enzymatic and chemical modification agents to constrain the secondary structure predicted from RNA folding algorithm Mfold. The IRES activity was found to be influenced by the interaction of trans-acting factor, polypyrimidine tract binding protein (PTB). Deletion of 25 nts from the 3'terminus of the 5'untranslated region resulted in reduced binding with PTB protein and also showed significant decrease in IRES activity compared to the wild type. We have also demonstrated putative contact points of PTB on the IRF2-5'UTR using primer extension inhibition assay. Majority of the PTB toe-prints were found to be restricted to the 3'end of the IRES. Additionally, Circular Dichroism (CD) spectra analysis suggested change in the conformation of the RNA upon PTB binding. Further, binding studies using S10 extract from HeLa cells, partially silenced for PTB gene expression, resulted in reduced binding by other trans-acting factors. Finally, we have demonstrated that addition of recombinant PTB enhances ribosome assembly on IRF2 IRES suggesting possible role of PTB in mediating internal initiation of translation of IRF2 RNA. CONCLUSION/SIGNIFICANCE: It appears that PTB binding to multiple sites within IRF2 5'UTR leads to a conformational change in the RNA that facilitate binding of other trans-acting factors to mediate internal initiation of translation

    Is vaccine the magic bullet for malaria elimination? A reality check

    Get PDF
    Malaria remains a major health burden especially for the developing countries. Despite concerted efforts at using the current control tools, such as bed nets, anti malarial drugs and vector control measures, the disease is accountable for close to a million deaths annually. Vaccines have been proposed as a necessary addition to the armamentarium that could work towards elimination and eventual eradication of malaria in view of their historical significance in combating infectious diseases. However, because malaria vaccines would work differently depending on the targeted parasite stage, this review addresses the potential impact various malaria vaccine types could have on transmission. Further, because of the wide variation in the epidemiology of malaria across the endemic regions, this paper proposes that the ideal approach to malaria control ought to be tailor-made depending on the specific context. Finally, it suggests that although it is highly desirable to anticipate and aim for malaria elimination and eventual eradication, many affected regions should prioritize reduction of mortality and morbidity before aspiring for elimination

    A cortical motor nucleus drives the basal ganglia-recipient thalamus in singing birds

    Get PDF
    The pallido-recipient thalamus transmits information from the basal ganglia to the cortex and is critical for motor initiation and learning. Thalamic activity is strongly inhibited by pallidal inputs from the basal ganglia, but the role of nonpallidal inputs, such as excitatory inputs from cortex, remains unclear. We simultaneously recorded from presynaptic pallidal axon terminals and postsynaptic thalamocortical neurons in a basal ganglia–recipient thalamic nucleus that is necessary for vocal variability and learning in zebra finches. We found that song-locked rate modulations in the thalamus could not be explained by pallidal inputs alone and persisted following pallidal lesion. Instead, thalamic activity was likely driven by inputs from a motor cortical nucleus that is also necessary for singing. These findings suggest a role for cortical inputs to the pallido-recipient thalamus in driving premotor signals that are important for exploratory behavior and learning.National Institutes of Health (U.S.) (Grant R01DC009183)National Institutes of Health (U.S.) (Grant K99NS067062)Damon Runyon Cancer Research Foundation (Postdoctoral Fellowship)Charles A. King Trust (Postdoctoral Fellowship

    Regulation of CEACAM1 transcription in human breast epithelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1) is a transmembrane protein with multiple functions in different cell types. CEACAM1 expression is frequently mis-regulated in cancer, with down-regulation reported in several tumors of epithelial origin and <it>de novo </it>expression of CEACAM1 in lung cancer and malignant melanoma. In this report we analyzed the regulation of CEACAM1 expression in three breast cancer cell lines that varied in CEACAM1 expression from none (MCF7) to moderate (MDA-MB-468) to high (MCF10A, comparable to normal breast).</p> <p>Results</p> <p>Using <it>in vivo </it>footprinting and chromatin immunoprecipitation experiments we show that the <it>CEACAM1 </it>proximal promoter in breast cells is bound in its active state by SP1, USF1/USF2, and IRF1/2. When down-regulated the <it>CEACAM1 </it>promoter remains accessible to USF2 and partially accessible to USF1. Interferon-γ up-regulates CEACAM1 mRNA by a mechanism involving further induction of IRF-1 and USF1 binding at the promoter. As predicted by this analysis, silencing of IRF1 and USF1 but not USF2 by RNAi resulted in a significant decrease in CEACAM1 protein expression in MDA-MB-468 cells. The inactive <it>CEACAM1 </it>promoter in MCF7 cells exhibits decreased histone acetylation at the promoter region, with no evidence of H3K9 or H3K27 trimethylation, histone modifications often linked to condensed chromatin structure.</p> <p>Conclusions</p> <p>Our data suggest that transcription activators USF1 and IRF1 interact to modulate CEACAM1 expression and that the chromatin structure of the promoter is likely maintained in a poised state that can promote rapid induction under appropriate conditions.</p

    Oral Rabies Vaccination in North America: Opportunities, Complexities, and Challenges

    Get PDF
    Steps to facilitate inter-jurisdictional collaboration nationally and continentally have been critical for implementing and conducting coordinated wildlife rabies management programs that rely heavily on oral rabies vaccination (ORV). Formation of a national rabies management team has been pivotal for coordinated ORV programs in the United States of America. The signing of the North American Rabies Management Plan extended a collaborative framework for coordination of surveillance, control, and research in border areas among Canada, Mexico, and the US. Advances in enhanced surveillance have facilitated sampling of greater scope and intensity near ORV zones for improved rabies management decision-making in real time. The value of enhanced surveillance as a complement to public health surveillance was best illustrated in Ohio during 2007, where 19 rabies cases were detected that were critical for the formulation of focused contingency actions for controlling rabies in this strategically key area. Diverse complexities and challenges are commonplace when applying ORV to control rabies in wild meso-carnivores. Nevertheless, intervention has resulted in notable successes, including the elimination of an arctic fox (Vulpes lagopus) rabies virus variant in most of southern Ontario, Canada, with ancillary benefits of elimination extending into Quebec and the northeastern US. Progress continues with ORV toward preventing the spread and working toward elimination of a unique variant of gray fox (Urocyon cinereoargenteus) rabies in west central Texas. Elimination of rabies in coyotes (Canis latrans) through ORV contributed to the US being declared free of canine rabies in 2007. Raccoon (Procyon lotor) rabies control continues to present the greatest challenges among meso-carnivore rabies reservoirs, yet to date intervention has prevented this variant from gaining a broad geographic foothold beyond ORV zones designed to prevent its spread from the eastern US. Progress continues toward the development and testing of new bait-vaccine combinations that increase the chance for improved delivery and performance in the diverse meso-carnivore rabies reservoir complex in the US

    Imbalanced pattern completion vs. separation in cognitive disease: network simulations of synaptic pathologies predict a personalized therapeutics strategy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diverse Mouse genetic models of neurodevelopmental, neuropsychiatric, and neurodegenerative causes of impaired cognition exhibit at least four convergent points of synaptic malfunction: 1) Strength of long-term potentiation (LTP), 2) Strength of long-term depression (LTD), 3) Relative inhibition levels (Inhibition), and 4) Excitatory connectivity levels (Connectivity).</p> <p>Results</p> <p>To test the hypothesis that pathological increases or decreases in these synaptic properties could underlie imbalances at the level of basic neural network function, we explored each type of malfunction in a simulation of autoassociative memory. These network simulations revealed that one impact of impairments or excesses in each of these synaptic properties is to shift the trade-off between pattern separation and pattern completion performance during memory storage and recall. Each type of synaptic pathology either pushed the network balance towards intolerable error in pattern separation or intolerable error in pattern completion. Imbalances caused by pathological impairments or excesses in LTP, LTD, inhibition, or connectivity, could all be exacerbated, or rescued, by the simultaneous modulation of any of the other three synaptic properties.</p> <p>Conclusions</p> <p>Because appropriate modulation of any of the synaptic properties could help re-balance network function, regardless of the origins of the imbalance, we propose a new strategy of personalized cognitive therapeutics guided by assay of pattern completion vs. pattern separation function. Simulated examples and testable predictions of this theorized approach to cognitive therapeutics are presented.</p

    A comprehensive overview of radioguided surgery using gamma detection probe technology

    Get PDF
    The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology
    corecore