22 research outputs found

    Response of Methicillin-Resistant Staphylococcus aureus to Amicoumacin A

    Get PDF
    Amicoumacin A exhibits strong antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA), hence we sought to uncover its mechanism of action. Genome-wide transcriptome analysis of S. aureus COL in response to amicoumacin A showed alteration in transcription of genes specifying several cellular processes including cell envelope turnover, cross-membrane transport, virulence, metabolism, and general stress response. The most highly induced gene was lrgA, encoding an antiholin-like product, which is induced in cells undergoing a collapse of Δψ. Consistent with the notion that LrgA modulates murein hydrolase activity, COL grown in the presence of amicoumacin A showed reduced autolysis, which was primarily caused by lower hydrolase activity. To gain further insight into the mechanism of action of amicoumacin A, a whole genome comparison of wild-type COL and amicoumacin A-resistant mutants isolated by a serial passage method was carried out. Single point mutations generating codon substitutions were uncovered in ksgA (encoding RNA dimethyltransferase), fusA (elongation factor G), dnaG (primase), lacD (tagatose 1,6-bisphosphate aldolase), and SACOL0611 (a putative glycosyl transferase). The codon substitutions in EF-G that cause amicoumacin A resistance and fusidic acid resistance reside in separate domains and do not bring about cross resistance. Taken together, these results suggest that amicoumacin A might cause perturbation of the cell membrane and lead to energy dissipation. Decreased rates of cellular metabolism including protein synthesis and DNA replication in resistant strains might allow cells to compensate for membrane dysfunction and thus increase cell survivability

    Mechanism of Kasugamycin Resistance in Escherichia coli

    No full text

    The Spectral Game: leveraging Open Data and crowdsourcing for education

    Get PDF
    <p>Abstract</p> <p>We report on the implementation of the Spectral Game, a web-based game where players try to match molecules to various forms of interactive spectra including 1D/2D NMR, Mass Spectrometry and Infrared spectra. Each correct selection earns the player one point and play continues until the player supplies an incorrect answer. The game is usually played using a web browser interface, although a version has been developed in the virtual 3D environment of Second Life. Spectra uploaded as Open Data to ChemSpider in JCAMP-DX format are used for the problem sets together with structures extracted from the website. The spectra are displayed using JSpecView, an Open Source spectrum viewing applet which affords zooming and integration. The application of the game to the teaching of proton NMR spectroscopy in an undergraduate organic chemistry class and a 2D Spectrum Viewer are also presented.</p
    corecore