24 research outputs found

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Oral l-menthol reduces thermal sensation, increases work-rate and extends time to exhaustion, in the heat at a fixed rating of perceived exertion

    Get PDF
    PurposeThe study investigated the effect of a non-thermal cooling agent, l-menthol, on exercise at a fixed subjective rating of perceived exertion (RPE) in a hot environment.MethodEight male participants completed two trials at an exercise intensity between ‘hard’ and ‘very hard’, equating to 16 on the RPE scale at ~35 °C. Participants were instructed to continually adjust their power output to maintain an RPE of 16 throughout the exercise trial, stopping once power output had fallen by 30%. In a randomized crossover design, either l-menthol or placebo mouthwash was administered prior to exercise and at 10 min intervals. Power output, VO2, heart rate, core and skin temperature was monitored, alongside thermal sensation and thermal comfort. Isokinetic peak power sprints were conducted prior to and immediately after the fixed RPE trial.ResultsExercise time was greater (23:23 ± 3:36 vs. 21:44 ± 2:32 min; P = 0.049) and average power output increased (173 ± 24 vs. 167 ± 24 W; P = 0.044) in the l-menthol condition. Peak isokinetic sprint power declined from pre-post trial in the l-menthol l (9.0%; P = 0.015) but not in the placebo condition (3.4%; P = 0.275). Thermal sensation was lower in the l-menthol condition (P = 0.036), despite no changes in skin or core temperature (P > 0.05).Conclusion These results indicate that a non-thermal cooling mouth rinse lowered thermal sensation, resulting in an elevated work rate, which extended exercise time in the heat at a fixed RPE

    A systematic review of non-hormonal treatments of vasomotor symptoms in climacteric and cancer patients

    Get PDF

    A large-scale automated radio telemetry network for monitoring movements of terrestrial wildlife in Australia

    Full text link
    Technologies for remotely observing animal movements have advanced rapidly in the past decade. In recent years, Australia has invested in an Integrated Marine Ocean Tracking (IMOS) system, a land ecosystem observatory (TERN), and an Australian Acoustic Observatory (A2O), but has not established movement tracking systems for individual terrestrial animals across land and along coastlines. Here, we make the case that the Motus Wildlife Tracking System, an open-source, rapidly expanding cooperative automated radio-tracking global network (Motus, https://motus.org) provides an unprecedented opportunity to build an affordable and proven infrastructure that will boost wildlife biology research and connect Australian researchers domestically and with international wildlife research. We briefly describe the system conceptually and technologically, then present the unique strengths of Motus, how Motus can complement and expand existing and emerging animal tracking systems, and how the Motus framework provides a much-needed central repository and impetus for archiving and sharing animal telemetry data. We propose ways to overcome the unique challenges posed by Australia’s ecological attributes and the size of its scientific community. Open source, inherently cooperative and flexible, Motus provides a unique opportunity to leverage individual research effort into a larger collaborative achievement, thereby expanding the scale and scope of individual projects, while maximising the outcomes of scant research and conservation funding
    corecore