64 research outputs found

    Upregulation of PPARβ/δ Is Associated with Structural and Functional Changes in the Type I Diabetes Rat Diaphragm

    Get PDF
    Diabetes mellitus is associated with alterations in peripheral striated muscles and cardiomyopathy. We examined diaphragmatic function and fiber composition and identified the role of peroxisome proliferator-activated receptors (PPAR alpha and beta/delta) as a factor involved in diaphragm muscle plasticity in response to type I diabetes.Streptozotocin-treated rats were studied after 8 weeks and compared with their controls. Diaphragmatic strips were stimulated in vitro and mechanical and energetic variables were measured, cross bridge kinetics assessed, and the effects of fatigue and hypoxia evaluated. Morphometry, myosin heavy chain isoforms, PPAR alpha and beta/delta gene and protein expression were also assessed. Diabetes induced a decrease in maximum velocity of shortening (-14%, P<0.05) associated with a decrease in myosin ATPase activity (-49%, P<0.05), and an increase in force (+20%, P<0.05) associated with an increase in the number of cross bridges (+14%, P<0.05). These modifications were in agreement with a shift towards slow myosin heavy chain fibers and were associated with an upregulation of PPARbeta/delta (+314% increase in gene and +190% increase in protein expression, P<0.05). In addition, greater resistances to fatigue and hypoxia were observed in diabetic rats.Type I diabetes induced complex mechanical and energetic changes in the rat diaphragm and was associated with an up-regulation of PPARbeta/delta that could improve resistance to fatigue and hypoxia and favour the shift towards slow myosin heavy chain isoforms

    Abdominal muscle fatigue following exercise in chronic obstructive pulmonary disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In patients with chronic obstructive pulmonary disease, a restriction on maximum ventilatory capacity contributes to exercise limitation. It has been demonstrated that the diaphragm in COPD is relatively protected from fatigue during exercise. Because of expiratory flow limitation the abdominal muscles are activated early during exercise in COPD. This adds significantly to the work of breathing and may therefore contribute to exercise limitation. In healthy subjects, prior expiratory muscle fatigue has been shown itself to contribute to the development of quadriceps fatigue. It is not known whether fatigue of the abdominal muscles occurs during exercise in COPD.</p> <p>Methods</p> <p>Twitch gastric pressure (TwT10Pga), elicited by magnetic stimulation over the 10<sup>th </sup>thoracic vertebra and twitch transdiaphragmatic pressure (TwPdi), elicited by bilateral anterolateral magnetic phrenic nerve stimulation were measured before and after symptom-limited, incremental cycle ergometry in patients with COPD.</p> <p>Results</p> <p>Twenty-three COPD patients, with a mean (SD) FEV<sub>1 </sub>40.8(23.1)% predicted, achieved a mean peak workload of 53.5(15.9) W. Following exercise, TwT<sub>10</sub>Pga fell from 51.3(27.1) cmH<sub>2</sub>O to 47.4(25.2) cmH<sub>2</sub>O (p = 0.011). TwPdi did not change significantly; pre 17.0(6.4) cmH<sub>2</sub>O post 17.5(5.9) cmH<sub>2</sub>O (p = 0.7). Fatiguers, defined as having a fall TwT10Pga ≥ 10% had significantly worse lung gas transfer, but did not differ in other exercise parameters.</p> <p>Conclusions</p> <p>In patients with COPD, abdominal muscle but not diaphragm fatigue develops following symptom limited incremental cycle ergometry. Further work is needed to establish whether abdominal muscle fatigue is relevant to exercise limitation in COPD, perhaps indirectly through an effect on quadriceps fatigability.</p

    Particulate Matter Exposure Exacerbates High Glucose-Induced Cardiomyocyte Dysfunction through ROS Generation

    Get PDF
    Diabetes mellitus and fine particulate matter from diesel exhaust (DEP) are both important contributors to the development of cardiovascular disease (CVD). Diabetes mellitus is a progressive disease with a high mortality rate in patients suffering from CVD, resulting in diabetic cardiomyopathy. Elevated DEP levels in the air are attributed to the development of various CVDs, presumably since fine DEP (<2.5 µm in diameter) can be inhaled and gain access to the circulatory system. However, mechanisms defining how DEP affects diabetic or control cardiomyocyte function remain poorly understood. The purpose of the present study was to evaluate cardiomyocyte function and reactive oxygen species (ROS) generation in isolated rat ventricular myocytes exposed overnight to fine DEP (0.1 µg/ml), and/or high glucose (HG, 25.5 mM). Our hypothesis was that DEP exposure exacerbates contractile dysfunction via ROS generation in cardiomyocytes exposed to HG. Ventricular myocytes were isolated from male adult Sprague-Dawley rats cultured overnight and sarcomeric contractile properties were evaluated, including: peak shortening normalized to baseline (PS), time-to-90% shortening (TPS90), time-to-90% relengthening (TR90) and maximal velocities of shortening/relengthening (±dL/dt), using an IonOptix field-stimulator system. ROS generation was determined using hydroethidine/ethidium confocal microscopy. We found that DEP exposure significantly increased TR90, decreased PS and ±dL/dt, and enhanced intracellular ROS generation in myocytes exposed to HG. Further studies indicated that co-culture with antioxidants (0.25 mM Tiron and 0.5 mM N-Acetyl-L-cysteine) completely restored contractile function in DEP, HG and HG+DEP-treated myocytes. ROS generation was blocked in HG-treated cells with mitochondrial inhibition, while ROS generation was blocked in DEP-treated cells with NADPH oxidase inhibition. Our results suggest that DEP exacerbates myocardial dysfunction in isolated cardiomyocytes exposed to HG-containing media, which is potentially mediated by various ROS generation pathways

    Skeletal muscle interleukin-6 regulation in hyperthermia

    No full text
    corecore