83 research outputs found

    A loop of cancer-stroma-cancer interaction promotes peritoneal metastasis of ovarian cancer via TNFα-TGFα-EGFR.

    Get PDF
    Peritoneum is the most common site for ovarian cancer metastasis. Here we investigate how cancer epigenetics regulates reciprocal tumor-stromal interactions in peritoneal metastasis of ovarian cancer. Firstly, we find that omental stromal fibroblasts enhance colony formation of metastatic ovarian cancer cells, and de novo expression of transforming growth factor-alpha (TGF-α) is induced in stromal fibroblasts co-cultured with ovarian cancer cells. We also observed an over-expression of tumor necrosis factor-alpha (TNF-α) in ovarian cancer cells, which is regulated by promoter DNA hypomethylation as well as chromatin remodeling. Interestingly, this ovarian cancer-derived TNF-α induces TGF-α transcription in stromal fibroblasts through nuclear factor-κB (NF-κB). We further show that TGF-α secreted by stromal fibroblasts in turn promotes peritoneal metastasis of ovarian cancer through epidermal growth factor receptor (EGFR) signaling. Finally, we identify a TNFα-TGFα-EGFR interacting loop between tumor and stromal compartments of human omental metastases. Our results therefore demonstrate cancer epigenetics induces a loop of cancer-stroma-cancer interaction in omental microenvironment that promotes peritoneal metastasis of ovarian cancer cells via TNFα-TGFα-EGFR

    Intra-articular vs. systemic administration of etanercept in antigen-induced arthritis in the temporomandibular joint. Part II: mandibular growth

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Temporomandibular joint (TMJ) arthritis in children causes alterations in the craniomandibular growth. Resultant abnormalities include; condylar erosions, a posterior mandibular rotation pattern, micrognathia, malocclusion with an anterior open bite, altered joint and muscular function occasionally associated with pain. These alterations may be prevented by early aggressive anti-inflammatory intervention. Previously, we have shown that intra-articular (IA) corticosteroid reduces TMJ inflammation but causes additional mandibular growth inhibition in young rabbits. Local blockage of TNF-α may be an alternative treatment approach against TMJ involvement in juvenile idiopathic arthritis (JIA). We evaluated the anti-inflammatory effect of IA etanercept compared to subcutaneous etanercept in antigen-induced TMJ-arthritis in young rabbits in terms of mandibular growth. This article (Part II) presents the data and discussion on the effects on facial growth. In Part I the anti-inflammatory effects of systemic and IA etanercept administration are discussed.</p> <p>Methods</p> <p>Arthritis was induced and maintained in the TMJs of 10-week old pre-sensitized rabbits (n = 42) by four repeated IA TMJ injections with ovalbumin, over a 12-week period. One group was treated weekly with systemic etanercept (0.8 mg/kg) (n = 14), another group (n = 14) received IA etanercept (0.1 mg/kg) bilaterally one week after induction of arthritis and one group (n = 14) served as an untreated arthritis group receiving IA TMJ saline injections. Head computerized tomographic scans were done before arthritis was induced and at the end of the study. Three small tantalum implants were inserted into the mandible, serving as stable landmarks for the super-impositions. Nineteen variables were evaluated in a mandibular growth analysis for inter-group differences. All data was evaluated blindedly. ANOVA and T-tests were applied for statistical evaluation using p < 0.05 as significance level.</p> <p>Results</p> <p>Significant larger mandibular growth disturbances were observed in the group receiving IA saline injections compared with the systemic etanercept group. The most pronounced unfavourable posterior mandibular rotation pattern was observed in the group receiving IA saline injections.</p> <p>Conclusion</p> <p>Intervention with systemic etanercept monotherapy equivalent to the recommended human dose allows a mandibular growth towards an original morphology in experimental TMJ arthritis. Systemic administrations of etanercept are superior to IA TMJ administration of etanercept in maintaining mandibular vertical growth.</p

    Intra-articular vs. systemic administration of etanercept in antigen-induced arthritis in the temporomandibular joint. Part II: mandibular growth

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Temporomandibular joint (TMJ) arthritis in children causes alterations in the craniomandibular growth. Resultant abnormalities include; condylar erosions, a posterior mandibular rotation pattern, micrognathia, malocclusion with an anterior open bite, altered joint and muscular function occasionally associated with pain. These alterations may be prevented by early aggressive anti-inflammatory intervention. Previously, we have shown that intra-articular (IA) corticosteroid reduces TMJ inflammation but causes additional mandibular growth inhibition in young rabbits. Local blockage of TNF-α may be an alternative treatment approach against TMJ involvement in juvenile idiopathic arthritis (JIA). We evaluated the anti-inflammatory effect of IA etanercept compared to subcutaneous etanercept in antigen-induced TMJ-arthritis in young rabbits in terms of mandibular growth. This article (Part II) presents the data and discussion on the effects on facial growth. In Part I the anti-inflammatory effects of systemic and IA etanercept administration are discussed.</p> <p>Methods</p> <p>Arthritis was induced and maintained in the TMJs of 10-week old pre-sensitized rabbits (n = 42) by four repeated IA TMJ injections with ovalbumin, over a 12-week period. One group was treated weekly with systemic etanercept (0.8 mg/kg) (n = 14), another group (n = 14) received IA etanercept (0.1 mg/kg) bilaterally one week after induction of arthritis and one group (n = 14) served as an untreated arthritis group receiving IA TMJ saline injections. Head computerized tomographic scans were done before arthritis was induced and at the end of the study. Three small tantalum implants were inserted into the mandible, serving as stable landmarks for the super-impositions. Nineteen variables were evaluated in a mandibular growth analysis for inter-group differences. All data was evaluated blindedly. ANOVA and T-tests were applied for statistical evaluation using p < 0.05 as significance level.</p> <p>Results</p> <p>Significant larger mandibular growth disturbances were observed in the group receiving IA saline injections compared with the systemic etanercept group. The most pronounced unfavourable posterior mandibular rotation pattern was observed in the group receiving IA saline injections.</p> <p>Conclusion</p> <p>Intervention with systemic etanercept monotherapy equivalent to the recommended human dose allows a mandibular growth towards an original morphology in experimental TMJ arthritis. Systemic administrations of etanercept are superior to IA TMJ administration of etanercept in maintaining mandibular vertical growth.</p

    Toll-like receptor 2 gene polymorphisms, pulmonary tuberculosis, and natural killer cell counts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate whether the toll-like receptor 2 polymorphisms could influence susceptibility to pulmonary TB, its phenotypes, and blood lymphocyte subsets.</p> <p>Methods</p> <p>A total of 368 subjects, including 184 patients with pulmonary TB and 184 healthy controls, were examined for TLR2 polymorphisms over locus -100 (microsatellite guanine-thymine repeats), -16934 (T>A), -15607 (A>G), -196 to -174 (insertion>deletion), and 1350 (T>C). Eighty-six TB patients were examined to determine the peripheral blood lymphocyte subpopulations.</p> <p>Results</p> <p>We newly identified an association between the haplotype [A-G-(insertion)-T] and susceptibility to pulmonary TB (p = 0.006, false discovery rate q = 0.072). TB patients with systemic symptoms had a lower -196 to -174 deletion/deletion genotype frequency than those without systemic symptoms (5.7% vs. 17.7%; p = 0.01). TB patients with the deletion/deletion genotype had higher blood NK cell counts than those carrying the insertion allele (526 vs. 243.5 cells/μl, p = 0.009). TB patients with pleuritis had a higher 1350 CC genotype frequency than those without pleuritis (12.5% vs. 2.1%; p = 0.004). TB patients with the 1350 CC genotype had higher blood NK cell counts than those carrying the T allele (641 vs. 250 cells/μl, p = 0.004). TB patients carrying homozygous short alleles for GT repeats had higher blood NK cell counts than those carrying one or no short allele (641 vs. 250 cells/μl, p = 0.004).</p> <p>Conclusions</p> <p>TLR2 genetic polymorphisms influence susceptibility to pulmonary TB. TLR2 variants play a role in the development of TB phenotypes, probably by controlling the expansion of NK cells.</p

    BRIT1/MCPH1 links chromatin remodelling to DNA damage response

    Get PDF
    To detect and repair damaged DNA, DNA damage response proteins need to overcome the barrier of condensed chromatin to gain access to DNA lesions1. ATP-dependent chromatin remodeling is one of the fundamental mechanisms used by cells to relax chromatin in DNA repair2–3. However, the mechanism mediating their recruitment to DNA lesions remains largely unknown. BRIT1 (also known as MCPH1) is an early DNA damage response protein that is mutated in human primary microcephaly4–8. We report here a previously unknown function of BRIT1 as a regulator of ATP-dependent chromatin remodeling complex SWI/SNF in DNA repair. Upon DNA damage, BRIT1 increases its interaction with SWI/SNF through the ATM/ATR-dependent phosphorylation on the BAF170 subunit. This increase of binding affinity provides a means by which SWI/SNF can be specifically recruited to and maintained at DNA lesions. Loss of BRIT1 causes impaired chromatin relaxation owing to reduced association of SWI/SNF with chromatin. This explains the decreased recruitment of repair proteins to DNA lesions and reduced efficiency of repair in BRIT1-deficient cells, resulting in impaired survival from DNA damage. Our findings, therefore, identify BRIT1 as a key molecule that links chromatin remodeling with DNA damage response in the control of DNA repair, and its dysfunction contributes to human disease

    Intra-articular vs. systemic administration of etanercept in antigen-induced arthritis in the temporomandibular point. Part I: histological effects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Temporomandibular joint (TMJ) arthritis in children causes alterations in craniomandibular growth. This abnormal growth may be prevented by an early anti-inflammatory intervention. We have previously shown that intra-articular (IA) corticosteroid reduces TMJ inflammation, but causes concurrent mandibular growth inhibition in young rabbits. Blockage of TNF-α has already proven its efficacy in children with juvenile idiopathic arthritis not responding to standard therapy. In this paper we evaluate the effect of IA etanercept compared to subcutaneous etanercept in antigen-induced TMJ-arthritis in rabbits on histological changes using histomorphometry and stereology. This article presents the data and discussion on the anti-inflammatory effects of systemic and IA etanercept. In Part II the data on the effects of systemic and IA etanercept on facial growth are presented.</p> <p>Methods</p> <p>Forty-two rabbits (10 weeks old) pre-sensitized with ovalbumin and locally induced inflammation in the temporomandibular joints were divided into three groups: a placebo group receiving IA saline injections in both joints one week after arthritis induction (n = 14), an IA etanercept group receiving 0.1 mg/kg etanercept per joint one week after arthritis induction (n = 14) and a systemic etanercept group receiving 0.8 mg/kg etanercept weekly throughout the 12-week study (n = 14). Arthritis was maintained by giving four inductions three weeks apart. Additional IA saline or etanercept injections were also given one week after the re-inductions. Histomorphometric and unbiased stereological methods (optical fractionator) were used to assess and estimate the inflammation in the joints.</p> <p>Results</p> <p>The histomorphometry showed synovial proliferation in all groups. The plasma cell count obtained by the optical fractionator was significantly reduced when treating with systemic etanercept but not with IA etanercept. Semi-quantitative assessments of synovial proliferation and subsynovial inflammation also showed reduced inflammation in the systemic etanercept group. However, the thickness of the synovial lining and volume of the subsynovial connective tissue showed no differences between the groups.</p> <p>Conclusion</p> <p>An anti-inflammatory effect of systemic etanercept on the synovial tissues in the temporomandibular joint was shown. However, IA etanercept at the given dose had no significant effect on the severity of chronic inflammation on the parameters here tested in ovalbumin antigen-induced arthritis.</p

    Isolation, Characterization and Lipid-Binding Properties of the Recalcitrant FtsA Division Protein from Escherichia coli

    Get PDF
    We have obtained milligram amounts of highly pure Escherichia coli division protein FtsA from inclusion bodies with an optimized purification method that, by overcoming the reluctance of FtsA to be purified, surmounts a bottleneck for the analysis of the molecular basis of FtsA function. Purified FtsA is folded, mostly monomeric and interacts with lipids. The apparent affinity of FtsA binding to the inner membrane is ten-fold higher than to phospholipids, suggesting that inner membrane proteins could modulate FtsA-membrane interactions. Binding of FtsA to lipids and membranes is insensitive to ionic strength, indicating that a net contribution of hydrophobic interactions is involved in the association of FtsA to lipid/membrane structures

    Interaction of Pattern Recognition Receptors with Mycobacterium Tuberculosis.

    Get PDF
    Tuberculosis (TB) is considered a major worldwide health problem with 10 million new cases diagnosed each year. Our understanding of TB immunology has become greater and more refined since the identification of Mycobacterium tuberculosis (MTB) as an etiologic agent and the recognition of new signaling pathways modulating infection. Understanding the mechanisms through which the cells of the immune system recognize MTB can be an important step in designing novel therapeutic approaches, as well as improving the limited success of current vaccination strategies. A great challenge in chronic disease is to understand the complexities, mechanisms, and consequences of host interactions with pathogens. Innate immune responses along with the involvement of distinct inflammatory mediators and cells play an important role in the host defense against the MTB. Several classes of pattern recognition receptors (PRRs) are involved in the recognition of MTB including Toll-Like Receptors (TLRs), C-type lectin receptors (CLRs) and Nod-like receptors (NLRs) linked to inflammasome activation. Among the TLR family, TLR1, TLR2, TLR4, and TLR9 and their down-stream signaling proteins play critical roles in the initiation of the immune response in the pathogenesis of TB. The inflammasome pathway is associated with the coordinated release of cytokines such as IL-1β and IL-18 which also play a role in the pathogenesis of TB. Understanding the cross-talk between these signaling pathways will impact on the design of novel therapeutic strategies and in the development of vaccines and immunotherapy regimes. Abnormalities in PRR signaling pathways regulated by TB will affect disease pathogenesis and need to be elucidated. In this review we provide an update on PRR signaling during M. tuberculosis infection and indicate how greater knowledge of these pathways may lead to new therapeutic opportunities
    • …
    corecore