10 research outputs found

    Strategies for continuous balancing in future power systems with high wind and solar shares

    Get PDF
    The use of wind power has grown strongly in recent years and is expected to continue to increase in the coming decades. Solar power is also expected to increase significantly. In a power system, a continuous balance is maintained between total production and demand. This balancing is currently mainly managed with conventional power plants, but with larger amounts of wind and solar power, other sources will also be needed. Interesting possibilities include continuous control of wind and solar power, battery storage, electric vehicles, hydrogen production, and other demand resources with flexibility potential. The aim of this article is to describe and compare the different challenges and future possibilities in six systems concerning how to keep a continuous balance in the future with significantly larger amounts of variable renewable power production. A realistic understanding of how these systems plan to handle continuous balancing is central to effectively develop a carbon-dioxide-free electricity system of the future. The systems included in the overview are the Nordic synchronous area, the island of Ireland, the Iberian Peninsula, Texas (ERCOT), the central European system, and Great Britain

    Tissue engineering, stem cells, cloning, and parthenogenesis: new paradigms for therapy

    Get PDF
    Patients suffering from diseased and injured organs may be treated with transplanted organs. However, there is a severe shortage of donor organs which is worsening yearly due to the aging population. Scientists in the field of tissue engineering apply the principles of cell transplantation, materials science, and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Both therapeutic cloning (nucleus from a donor cell is transferred into an enucleated oocyte), and parthenogenesis (oocyte is activated and stimulated to divide), permit extraction of pluripotent embryonic stem cells, and offer a potentially limitless source of cells for tissue engineering applications. The stem cell field is also advancing rapidly, opening new options for therapy. The present article reviews recent progress in tissue engineering and describes applications of these new technologies that may offer novel therapies for patients with end-stage organ failure

    miR-124-3p is a chronic regulator of gene expression after brain injury

    No full text

    Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: challenges and opportunities

    No full text
    corecore