21 research outputs found

    The Hawke's Bay Wine Auction: History, motivations, and benefits

    No full text
    The Hawke’s Bay wine region, located on the East Coast of the North Island, is New Zealand’s oldest and second largest wine-producing region. In 2018, the region consisted of 72 wineries, over 145 grape growers and a vineyard area of approximately 4700 hectares (www.hawkesbaywine.co.nz). Production in the region is centred on premium red wine varietals (i.e. Merlot, Cabernet Sauvignon and Syrah) and Chardonnay. Wineries in the region have been supporting the Hawke’s Bay Wine Auction since its inception. This chapter introduces readers to the Hawke’s Bay Wine Auction and examines the motivations of the wineries who donate, as well as the benefits they perceive they gain from their participation in the auction. This chapter also introduces readers to other annual charity wine auctions held around the world

    The α-arrestin ARRDC3 mediates ALIX ubiquitination and G protein–coupled receptor lysosomal sorting

    No full text
    The sorting of G protein–coupled receptors (GPCRs) to lysosomes is critical for proper signaling and cellular responses. We previously showed that the adaptor protein ALIX regulates lysosomal degradation of protease-activated receptor-1 (PAR1), a GPCR for thrombin, independent of ubiquitin-binding ESCRTs and receptor ubiquitination. However, the mechanisms that regulate ALIX function during PAR1 lysosomal sorting are not known. Here we show that the mammalian α-arrestin arrestin domain–containing protein-3 (ARRDC3) regulates ALIX function in GPCR sorting via ubiquitination. ARRDC3 colocalizes with ALIX and is required for PAR1 sorting at late endosomes and degradation. Depletion of ARRDC3 by small interfering RNA disrupts ALIX interaction with activated PAR1 and the CHMP4B ESCRT-III subunit, suggesting that ARRDC3 regulates ALIX activity. We found that ARRDC3 is required for ALIX ubiquitination induced by activation of PAR1. A screen of nine mammalian NEDD4-family E3 ubiquitin ligases revealed a critical role for WWP2. WWP2 interacts with ARRDC3 and not ALIX. Depletion of WWP2 inhibited ALIX ubiquitination and blocked ALIX interaction with activated PAR1 and CHMP4B. These findings demonstrate a new role for the α-arrestin ARRDC3 and the E3 ubiquitin ligase WWP2 in regulation of ALIX ubiquitination and lysosomal sorting of GPCRs

    Tryptase activates isolated adult cardiac fibroblasts via protease activated receptor-2 (PAR-2)

    No full text
    Protease activated receptor-2 (PAR-2) derived cycloxygenase-2 (COX-2) was recently implicated in a cardiac mast cell and fibroblast cross-talk signaling cascade mediating myocardial remodeling secondary to mechanical stress. We designed this study to investigate in vitro assays of isolated adult cardiac fibroblasts to determine whether binding of tryptase to the PAR-2 receptor on cardiac fibroblasts will lead to increased expression of COX-2 and subsequent formation of the arachodonic acid metabolite 15-d-Prostaglandin J2 (15-d-PGJ2). The effects of tryptase (100 mU) and co-incubation with PAR-2 inhibitor peptide sequence FSLLRY-NH2 (10-6M) on proliferation, hydroxyproline concentration, 15-d-PGJ2 formation and PAR-2/COX-2 expression were investigated in fibroblasts isolated from 9 week old SD rats. Tryptase induced a significant increase in fibroproliferation, hydroxyproline, 15-d-PGJ2 formation and PAR-2 expression which were markedly attenuated by FSLLRY. Tryptase-induced changes in cardiac fibroblast function utilize a PAR-2 dependent mechanism
    corecore