12 research outputs found
Implementation and Analysis of Respondent Driven Sampling: Lessons Learned from the Field
Those who engage in illegal or stigmatized behaviors, which put them at risk of HIV infection, are largely concentrated in urban centers. Owing to their illegal and/ or stigmatized behaviors, they are difficult to reach with public health surveillance and prevention programs. 1 These populations include illicit drug users, sex workers and men who have sex with men. Development and implementation of adequate prevention services targeting hidden populations requires data on risk behaviors and disease prevalence from non-biased samples. In the last two decades, a number of sampling methods have been used to collect risk behavior and disease prevalence data from highly at-risk populations and to direct survey participants to prevention services. These include venue-based time–space sampling, targeted sampling, and snowball sampling. Time–space (also called time–location or venue–day–time) and targeted sampling provide coverage limited to population members who are readily accessible; those who are missed may differ from those who are Bcaptured[. 2 Targeted sampling fares well when compared to other forms of convenienc
Phylodynamics of HIV-1 from a Phase III AIDS Vaccine Trial in Bangkok, Thailand
In 2003, a phase III placebo-controlled trial (VAX003) was completed in Bangkok, Thailand. Of the 2,546 individuals enrolled in the trial based on high risk for infection through injection drug use (IDU), we obtained clinical samples and HIV-1 sequence data (envelope glycoprotein gene gp120) from 215 individuals who became infected during the trial. Here, we used these data in combination with other publicly available gp120 sequences to perform a molecular surveillance and phylodynamic analysis of HIV-1 in Thailand.Phylogenetic and population genetic estimators were used to assess HIV-1 gp120 diversity as a function of vaccination treatment, viral load (VL) and CD4(+) counts, to identify transmission clusters and to investigate the timescale and demographics of HIV-1 in Thailand. Three HIV-1 subtypes were identified: CRF01_AE (85% of the infections), subtype B (13%) and CRF15_AE (2%). The Bangkok IDU cohort showed more gp120 diversity than other Asian IDU cohorts and similar diversity to that observed in sexually infected individuals. Moreover, significant differences (P<0.02) in genetic diversity were observed in CRF01_AE IDU with different VL and CD4(+) counts. No phylogenetic structure was detected regarding any of the epidemiological and clinical factors tested, although high proportions (35% to 50%) of early infections fell into clusters, which suggests that transmission chains associated with acute infection play a key role on HIV-1 spread among IDU. CRF01_AE was estimated to have emerged in Thailand in 1984.5 (1983-1986), 3-6 years before the first recognition of symptomatic patients (1989). The relative genetic diversity of the HIV-1 population has remained high despite decreasing prevalence rates since the mid 1990s.Our study and recent epidemiological reports indicate that HIV-1 is still a major threat in Thailand and suggest that HIV awareness and prevention needs to be strengthened to avoid AIDS resurgence