14 research outputs found

    Copper-64 Radiopharmaceuticals for PET Imaging of Cancer: Advances in Preclinical and Clinical Research

    Get PDF
    Copper-64 (T1/2 = 12.7 hours; β+, 0.653 MeV [17.8 %]; β−, 0.579 MeV [38.4 %]) has decay characteristics that allow for positron emission tomography (PET) imaging and targeted radiotherapy of cancer. The well-established coordination chemistry of copper allows for its reaction with a wide variety of chelator systems that can potentially be linked to peptides and other biologically relevant small molecules, antibodies, proteins, and nanoparticles. The 12.7-hours half-life of 64Cu provides the flexibility to image both smaller molecules and larger, slower clearing proteins and nanoparticles. In a practical sense, the radionuclide or the 64Cu-radiopharmaceuticals can be easily shipped for PET imaging studies at sites remote to the production facility. Due to the versatility of 64Cu, there has been an abundance of novel research in this area over the past 20 years, primarily in the area of PET imaging, but also for the targeted radiotherapy of cancer. The biologic activity of the hypoxia imaging agent, 60/64Cu-ATSM, has been described in great detail in animal models and in clinical PET studies. An investigational new drug application for 64Cu-ATSM was recently approved by the U.S. Food and Drug Administration (FDA) in the United States, paving the way for a multicenter trial to validate the utility of this agent, with the hopeful result being FDA approval for routine clinical use. This article discusses state-of-the-art cancer imaging with 64Cu radiopharmaceuticals, including 64Cu-ATSM for imaging hypoxia, 64Cu-labeled peptides for tumor-receptor targeting, 64Cu-labeled monoclonal antibodies for targeting tumor antigens, and 64Cu-labeled nanoparticles for cancer targeting. The emphasis of this article will be on the new scientific discoveries involving 64Cu radiopharmaceuticals, as well as the translation of these into human studies

    Triply interlocked covalent organic cages

    No full text
    Interlocked molecules comprise two or more separate components that are joined by ‘mechanical’ rather than covalent bonds. In other words, these molecular assemblies cannot be dissociated without the cleavage of one or more chemical bonds. Although recent progress has enabled the preparation of such topologies through coordination or templating interactions, three-dimensional interlocked covalent architectures remain difficult to prepare. Here, we present a template-free one-pot synthesis of triply interlocked organic cages. These 20-component dimers consist of two tetrahedral monomeric cages each built from four nodes and six linkers. The monomers exhibit axial chirality, which is recognized by their partner cage during the template-free interlocking assembly process. The dimeric cages also include two well-defined cavities per assembly, which for one of the systems studied led to the formation of a supramolecular host–guest chain. These interlocked organic molecules may prove useful as part of a toolkit for the modular construction of complex porous solids and other supramolecular assemblies
    corecore