23 research outputs found

    Non-monotonic changes in clonogenic cell survival induced by disulphonated aluminum phthalocyanine photodynamic treatment in a human glioma cell line

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Photodynamic therapy (PDT) involves excitation of sensitizer molecules by visible light in the presence of molecular oxygen, thereby generating reactive oxygen species (ROS) through electron/energy transfer processes. The ROS, thus produced can cause damage to both the structure and the function of the cellular constituents resulting in cell death. Our preliminary investigations of dose-response relationships in a human glioma cell line (BMG-1) showed that disulphonated aluminum phthalocyanine (AlPcS<sub>2</sub>) photodynamically induced loss of cell survival in a concentration dependent manner up to 1 μM, further increases in AlPcS<sub>2</sub>concentration (>1 μM) were, however, observed to decrease the photodynamic toxicity. Considering the fact that for most photosensitizers only monotonic dose-response (survival) relationships have been reported, this result was unexpected. The present studies were, therefore, undertaken to further investigate the concentration dependent photodynamic effects of AlPcS<sub>2</sub>.</p> <p>Methods</p> <p>Concentration-dependent cellular uptake, sub-cellular localization, proliferation and photodynamic effects of AlPcS<sub>2 </sub>were investigated in BMG-1 cells by absorbance and fluorescence measurements, image analysis, cell counting and colony forming assays, flow cytometry and micronuclei formation respectively.</p> <p>Results</p> <p>The cellular uptake as a function of extra-cellular AlPcS<sub>2 </sub>concentrations was observed to be biphasic. AlPcS<sub>2 </sub>was distributed throughout the cytoplasm with intense fluorescence in the perinuclear regions at a concentration of 1 μM, while a weak diffuse fluorescence was observed at higher concentrations. A concentration-dependent decrease in cell proliferation with accumulation of cells in G<sub>2</sub>+M phase was observed after PDT. The response of clonogenic survival after AlPcS<sub>2</sub>-PDT was non-monotonic with respect to AlPcS<sub>2 </sub>concentration.</p> <p>Conclusions</p> <p>Based on the results we conclude that concentration-dependent changes in physico-chemical properties of sensitizer such as aggregation may influence intracellular transport and localization of photosensitizer. Consequent modifications in the photodynamic induction of lesions and their repair leading to different modes of cell death may contribute to the observed non-linear effects.</p

    Identifying an indoor air exposure limit for formaldehyde considering both irritation and cancer hazards

    Get PDF
    Formaldehyde is a well-studied chemical and effects from inhalation exposures have been extensively characterized in numerous controlled studies with human volunteers, including asthmatics and other sensitive individuals, which provide a rich database on exposure concentrations that can reliably produce the symptoms of sensory irritation. Although individuals can differ in their sensitivity to odor and eye irritation, the majority of authoritative reviews of the formaldehyde literature have concluded that an air concentration of 0.3 ppm will provide protection from eye irritation for virtually everyone. A weight of evidence-based formaldehyde exposure limit of 0.1 ppm (100 ppb) is recommended as an indoor air level for all individuals for odor detection and sensory irritation. It has recently been suggested by the International Agency for Research on Cancer (IARC), the National Toxicology Program (NTP), and the US Environmental Protection Agency (US EPA) that formaldehyde is causally associated with nasopharyngeal cancer (NPC) and leukemia. This has led US EPA to conclude that irritation is not the most sensitive toxic endpoint and that carcinogenicity should dictate how to establish exposure limits for formaldehyde. In this review, a number of lines of reasoning and substantial scientific evidence are described and discussed, which leads to a conclusion that neither point of contact nor systemic effects of any type, including NPC or leukemia, are causally associated with exposure to formaldehyde. This conclusion supports the view that the equivocal epidemiology studies that suggest otherwise are almost certainly flawed by identified or yet to be unidentified confounding variables. Thus, this assessment concludes that a formaldehyde indoor air limit of 0.1 ppm should protect even particularly susceptible individuals from both irritation effects and any potential cancer hazard

    Decision Making

    No full text

    Environmental Archaeology: What is in a name?

    No full text
    This book aims to thoroughly discuss new directions of thinking in the arena of environmental archaeology and test them by presenting new practical applications. Recent theoretical and epistemological advancement in the field of archaeology calls for a re-definition of the subdiscipline of environmental archaeology and its position within the practise of archaeology. New technological and methodological discoveries in hard sciences and computer applications opened fresh ways for interdisciplinary collaborations thus introducing new branches and specialisations that need now to be accommodated and integrated within the previous status-quo. This edited volume will take the challenge and engage with contemporary international discussions about the role of the discipline within the general framework of archaeology. By drawing upon these debates, the contributors to this volume will rethink what environmental archaeology is and what kind of input the investigation of this kind of materiality has to the reconstruction of human history and sociality
    corecore