184 research outputs found

    Drug Repurposing: Far Beyond New Targets for Old Drugs

    Get PDF
    Repurposing drugs requires finding novel therapeutic indications compared to the ones for which they were already approved. This is an increasingly utilized strategy for finding novel medicines, one that capitalizes on previous investments while derisking clinical activities. This approach is of interest primarily because we continue to face significant gaps in the drug–target interactions matrix and to accumulate safety and efficacy data during clinical studies. Collecting and making publicly available as much data as possible on the target profile of drugs offer opportunities for drug repurposing, but may limit the commercial applications by patent applications. Certain clinical applications may be more feasible for repurposing than others because of marked differences in side effect tolerance. Other factors that ought to be considered when assessing drug repurposing opportunities include relevance to the disease in question and the intellectual property landscape. These activities go far beyond the identification of new targets for old drugs

    Physiochemical property space distribution among human metabolites, drugs and toxins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The current approach to screen for drug-like molecules is to sieve for molecules with biochemical properties suitable for desirable pharmacokinetics and reduced toxicity, using predominantly biophysical properties of chemical compounds, based on empirical rules such as Lipinski's "rule of five" (Ro5). For over a decade, Ro5 has been applied to combinatorial compounds, drugs and ligands, in the search for suitable lead compounds. Unfortunately, till date, a clear distinction between drugs and non-drugs has not been achieved. The current trend is to seek out drugs which show metabolite-likeness. In identifying similar physicochemical characteristics, compounds have usually been clustered based on some characteristic, to reduce the search space presented by large molecular datasets. This paper examines the similarity of current drug molecules with human metabolites and toxins, using a range of computed molecular descriptors as well as the effect of comparison to clustered data compared to searches against complete datasets.</p> <p>Results</p> <p>We have carried out statistical and substructure functional group analyses of three datasets, namely human metabolites, drugs and toxin molecules. The distributions of various molecular descriptors were investigated. Our analyses show that, although the three groups are distinct, present-day drugs are closer to toxin molecules than to metabolites. Furthermore, these distributions are quite similar for both clustered data as well as complete or unclustered datasets.</p> <p>Conclusion</p> <p>The property space occupied by metabolites is dissimilar to that of drugs or toxin molecules, with current drugs showing greater similarity to toxins than to metabolites. Additionally, empirical rules like Ro5 can be refined to identify drugs or drug-like molecules that are clearly distinct from toxic compounds and more metabolite-like. The inclusion of human metabolites in this study provides a deeper insight into metabolite/drug/toxin-like properties and will also prove to be valuable in the prediction or optimization of small molecules as ligands for therapeutic applications.</p

    Evaluation of a Bayesian inference network for ligand-based virtual screening

    Get PDF
    Background Bayesian inference networks enable the computation of the probability that an event will occur. They have been used previously to rank textual documents in order of decreasing relevance to a user-defined query. Here, we modify the approach to enable a Bayesian inference network to be used for chemical similarity searching, where a database is ranked in order of decreasing probability of bioactivity. Results Bayesian inference networks were implemented using two different types of network and four different types of belief function. Experiments with the MDDR and WOMBAT databases show that a Bayesian inference network can be used to provide effective ligand-based screening, especially when the active molecules being sought have a high degree of structural homogeneity; in such cases, the network substantially out-performs a conventional, Tanimoto-based similarity searching system. However, the effectiveness of the network is much less when structurally heterogeneous sets of actives are being sought. Conclusion A Bayesian inference network provides an interesting alternative to existing tools for ligand-based virtual screening

    A physicochemical descriptor-based scoring scheme for effective and rapid filtering of kinase-like chemical space

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The current chemical space of known small molecules is estimated to exceed 10<sup>60 </sup>structures. Though the largest physical compound repositories contain only a few tens of millions of unique compounds, virtual screening of databases of this size is still difficult. In recent years, the application of physicochemical descriptor-based profiling, such as Lipinski's rule-of-five for drug-likeness and Oprea's criteria of lead-likeness, as early stage filters in drug discovery has gained widespread acceptance. In the current study, we outline a kinase-likeness scoring function based on known kinase inhibitors.</p> <p>Results</p> <p>The method employs a collection of 22,615 known kinase inhibitors from the ChEMBL database. A kinase-likeness score is computed using statistical analysis of nine key physicochemical descriptors for these inhibitors. Based on this score, the kinase-likeness of four publicly and commercially available databases, i.e., National Cancer Institute database (NCI), the Natural Products database (NPD), the National Institute of Health's Molecular Libraries Small Molecule Repository (MLSMR), and the World Drug Index (WDI) database, is analyzed. Three of these databases, i.e., NCI, NPD, and MLSMR are frequently used in the virtual screening of kinase inhibitors, while the fourth WDI database is for comparison since it covers a wide range of known chemical space. Based on the kinase-likeness score, a kinase-focused library is also developed and tested against three different kinase targets selected from three different branches of the human kinome tree.</p> <p>Conclusions</p> <p>Our proposed methodology is one of the first that explores how the narrow chemical space of kinase inhibitors and its relevant physicochemical information can be utilized to build kinase-focused libraries and prioritize pre-existing compound databases for screening. We have shown that focused libraries generated by filtering compounds using the kinase-likeness score have, on average, better docking scores than an equivalent number of randomly selected compounds. Beyond library design, our findings also impact the broader efforts to identify kinase inhibitors by screening pre-existing compound libraries. Currently, the NCI library is the most commonly used database for screening kinase inhibitors. Our research suggests that other libraries, such as MLSMR, are more kinase-like and should be given priority in kinase screenings.</p

    Fast 3D shape screening of large chemical databases through alignment-recycling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Large chemical databases require fast, efficient, and simple ways of looking for similar structures. Although such tasks are now fairly well resolved for graph-based similarity queries, they remain an issue for 3D approaches, particularly for those based on 3D shape overlays. Inspired by a recent technique developed to compare molecular shapes, we designed a hybrid methodology, alignment-recycling, that enables efficient retrieval and alignment of structures with similar 3D shapes.</p> <p>Results</p> <p>Using a dataset of more than one million PubChem compounds of limited size (< 28 heavy atoms) and flexibility (< 6 rotatable bonds), we obtained a set of a few thousand diverse structures covering entirely the 3D shape space of the conformers of the dataset. Transformation matrices gathered from the overlays between these diverse structures and the 3D conformer dataset allowed us to drastically (100-fold) reduce the CPU time required for shape overlay. The alignment-recycling heuristic produces results consistent with <it>de novo </it>alignment calculation, with better than 80% hit list overlap on average.</p> <p>Conclusion</p> <p>Overlay-based 3D methods are computationally demanding when searching large databases. Alignment-recycling reduces the CPU time to perform shape similarity searches by breaking the alignment problem into three steps: selection of diverse shapes to describe the database shape-space; overlay of the database conformers to the diverse shapes; and non-optimized overlay of query and database conformers using common reference shapes. The precomputation, required by the first two steps, is a significant cost of the method; however, once performed, querying is two orders of magnitude faster. Extensions and variations of this methodology, for example, to handle more flexible and larger small-molecules are discussed.</p

    Structural diversity of biologically interesting datasets: a scaffold analysis approach

    Get PDF
    ABSTRACT:The recent public availability of the human metabolome and natural product datasets has revitalized "metabolite-likeness" and "natural product-likeness" as a drug design concept to design lead libraries targeting specific pathways. Many reports have analyzed the physicochemical property space of biologically important datasets, with only a few comprehensively characterizing the scaffold diversity in public datasets of biological interest. With large collections of high quality public data currently available, we carried out a comparative analysis of current day leads with other biologically relevant datasets.In this study, we note a two-fold enrichment of metabolite scaffolds in drug dataset (42%) as compared to currently used lead libraries (23%). We also note that only a small percentage (5%) of natural product scaffolds space is shared by the lead dataset. We have identified specific scaffolds that are present in metabolites and natural products, with close counterparts in the drugs, but are missing in the lead dataset. To determine the distribution of compounds in physicochemical property space we analyzed the molecular polar surface area, the molecular solubility, the number of rings and the number of rotatable bonds in addition to four well-known Lipinski properties. Here, we note that, with only few exceptions, most of the drugs follow Lipinski's rule. The average values of the molecular polar surface area and the molecular solubility in metabolites is the highest while the number of rings is the lowest. In addition, we note that natural products contain the maximum number of rings and the rotatable bonds than any other dataset under consideration.Currently used lead libraries make little use of the metabolites and natural products scaffold space. We believe that metabolites and natural products are recognized by at least one protein in the biosphere therefore, sampling the fragment and scaffold space of these compounds, along with the knowledge of distribution in physicochemical property space, can result in better lead libraries. Hence, we recommend the greater use of metabolites and natural products while designing lead libraries. Nevertheless, metabolites have a limited distribution in chemical space that limits the usage of metabolites in library design.14 page(s

    The use of 2D fingerprint methods to support the assessment of structural similarity in orphan drug legislation.

    Get PDF
    In the European Union, medicines are authorised for some rare disease only if they are judged to be dissimilar to authorised orphan drugs for that disease. This paper describes the use of 2D fingerprints to show the extent of the relationship between computed levels of structural similarity for pairs of molecules and expert judgments of the similarities of those pairs. The resulting relationship can be used to provide input to the assessment of new active compounds for which orphan drug authorisation is being sought

    Software platform virtualization in chemistry research and university teaching

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Modern chemistry laboratories operate with a wide range of software applications under different operating systems, such as Windows, LINUX or Mac OS X. Instead of installing software on different computers it is possible to install those applications on a single computer using Virtual Machine software. Software platform virtualization allows a single guest operating system to execute multiple other operating systems on the same computer. We apply and discuss the use of virtual machines in chemistry research and teaching laboratories.</p> <p>Results</p> <p>Virtual machines are commonly used for cheminformatics software development and testing. Benchmarking multiple chemistry software packages we have confirmed that the computational speed penalty for using virtual machines is low and around 5% to 10%. Software virtualization in a teaching environment allows faster deployment and easy use of commercial and open source software in hands-on computer teaching labs.</p> <p>Conclusion</p> <p>Software virtualization in chemistry, mass spectrometry and cheminformatics is needed for software testing and development of software for different operating systems. In order to obtain maximum performance the virtualization software should be multi-core enabled and allow the use of multiprocessor configurations in the virtual machine environment. Server consolidation, by running multiple tasks and operating systems on a single physical machine, can lead to lower maintenance and hardware costs especially in small research labs. The use of virtual machines can prevent software virus infections and security breaches when used as a sandbox system for internet access and software testing. Complex software setups can be created with virtual machines and are easily deployed later to multiple computers for hands-on teaching classes. We discuss the popularity of bioinformatics compared to cheminformatics as well as the missing cheminformatics education at universities worldwide.</p
    corecore