2 research outputs found

    Syntheses, Protonation Constants and Antimicrobial Activity of 2-Substituted N-alkylimidazole Derivatives

    Get PDF
    A series of N-alkylimidazole-2-carboxylic acid, N-alkylimidazole-2-carboxaldehyde and N-alkylimidazole-2-methanol derivatives [alkyl = benzyl, methyl, ethyl, propyl, butyl, heptyl, octyl and decyl] have been synthesized and the protonation constants determined. The antimicrobial properties of the compounds were tested against Gram-negative (Escherichi coli), Gram-positive (Staphylococcus aureus & Bacillus subtilis subsp. spizizenii) bacterial strains and yeast (C. albicans). Both the disk diffusion and broth microdilution methods for testing the antimicrobial activity showed that N-alkylation of imidazole with longer alkyl chains and the substitution with low pKa group at 2-position resulted in enhanced antimicrobial activity. Particularly, the N-alkylimidazole-2-carboxylic acids exhibited the best antimicrobial activity due to the low pKa of the carboxylic acid moiety. Generally, all the N-alkylimidazole derivatives were most active against the Gram-positive bacteria [S. aureus (MIC = 5–160 μg mL–1) and B. subtilis subsp. spizizenii (5–20 μg mL–1)], with the latter more susceptible. All the compounds showed poor antimicrobial activity against both Gram-negative (E. coli, MIC = 0.15 to >2500 μg mL–1) bacteria and all the compounds were inactive against the yeast (Candida albicans).Keywords: N-alkylimidazoles, antimicrobial, pKa effect PDF and supplemetary file attached

    Theiler’s murine encephalomyelitis virus infection induces a redistribution of heat shock proteins 70 and 90 in BHK-21 cells, and is inhibited by novobiocin and geldanamycin

    Get PDF
    Theiler’s murine encephalomyelitis virus (TMEV) is a positive-sense RNA virus belonging to the Cardiovirus genus in the family Picornaviridae. In addition to other host cellular factors and pathways, picornaviruses utilise heat shock proteins (Hsps) to facilitate their propagation in cells. This study investigated the localisation of Hsps 70 and 90 in TMEV-infected BHK-21 cells by indirect immunofluorescence and confocal microscopy. The effect of Hsp90 inhibitors novobiocin (Nov) and geldanamycin (GA) on the development of cytopathic effect (CPE) induced by infection was also examined. Hsp90 staining was uniformly distributed in the cytoplasm of uninfected cells but was found concentrated in the perinuclear region during late infection where it overlapped with the signal for non-structural protein 2C within the viral replication complex. Hsp70 redistributed into the vicinity of the viral replication complex during late infection, but its distribution did not overlap with that of 2C. Inhibition of Hsp90 by GA and Nov had a negative effect on virus growth over a 48-h period as indicated by no observable CPE in treated compared to untreated cells. 2C was detected by Western analysis of GA-treated infected cell lysates at doses between 0.01 and 0.125 μM, suggesting that processing of viral precursors was not affected in the presence of this drug. In contrast, 2C was absent in cell lysates of Nov-treated cells at doses above 10 μM, although CPE was evident 48 hpi. This is the first study describing the dynamic behaviour of Hsps 70 and 90 in TMEV-infected cells and to identify Hsp90 as an important host factor in the life cycle of this virus
    corecore