188,003 research outputs found

    Approximate Theoretical Calculation of Continuum Opacities

    Get PDF
    An approxhnate procedure is described for the theoretical calculation of the spectral absorption coefficient produced by bound-free and free-free transitions in plasmas containing polyelectronic atoms and ions. Our method of calculation is based on the assumption that only two ionized species make important contributions to the opacity and that these two ionic constituents are present in equal concentrations. The approximate formulas are shown to yield results that are in good accord with estimates based on detailed numerical computations for nitrogen

    A Classification and Analysis of Higgs-flavor Models

    Full text link
    A classification is given of Higgs-flavor models. In these models, there are several Higgs doublets in an irreducible multiplet R_{Phi} of a non-abelian symmetry G_{Phi}, under which the quarks and leptons do not transform (thus giving minimal flavor-changing for the fermions). It is found that different G_{Phi} and R_{Phi} lead to very distinctive spectra of the extra Higgs doublets, including different numbers of "sequential Higgs" and of "inert Higgs" that could play the role of dark matter, different mass relations, and different patterns of SU(2)_L-breaking splittings within the Higgs doublets.Comment: 35 page

    Similarity parameters for radiative energy transfer in isothermal and non-isothermal gas mixtures

    Get PDF
    The similarity groups for multicomponent, reacting gas mixtures with radiative energy transport are derived (Section I). The resulting relations are used to consider the feasibility if scaling for flow processes with radiative energy transport under highly simplified conditions (Sections 2 and 3). Next the scaling parameters are derived for radiant energy emission from isobaric and isothermal gases for arbitrary opacities and various spectral line and molecular band models (Section 4). Scaling parameters for radiant energy emission from isobaric but non-isothermal systems are discussed for arbitrary opacities and various spectral line and molecular band models under the restrictions imposed on the allowed temperature profiles for dispersion and Doppler lines by the Eddington-Barbier approximation (Section 5). Finally, we consider the radiative scaling properties for representative temperature profiles for both collision-broadened and Doppler-broadened line profiles on the basis if exact numerical calculations that we have performed for a rotational spectral line belonging to a molecular vibration-rotation band. (Section 6). It appears that simple scaling rules generally constitute a fair approximation for dispersion lines in non-isothermal systems but that corresponding relations apply to lines with Doppler contour only in the transparent gas regime

    Increasing the Capacity of Primary Care Through Enabling Technology.

    Get PDF
    Primary care is the foundation of effective and high-quality health care. The role of primary care clinicians has expanded to encompass coordination of care across multiple providers and management of more patients with complex conditions. Enabling technology has the potential to expand the capacity for primary care clinicians to provide integrated, accessible care that channels expertise to the patient and brings specialty consultations into the primary care clinic. Furthermore, technology offers opportunities to engage patients in advancing their health through improved communication and enhanced self-management of chronic conditions. This paper describes enabling technologies in four domains (the body, the home, the community, and the primary care clinic) that can support the critical role primary care clinicians play in the health care system. It also identifies challenges to incorporating these technologies into primary care clinics, care processes, and workflow

    Nonlinear Evolution of the Magnetohydrodynamic Rayleigh-Taylor Instability

    Full text link
    We study the nonlinear evolution of the magnetic Rayleigh-Taylor instability using three-dimensional MHD simulations. We consider the idealized case of two inviscid, perfectly conducting fluids of constant density separated by a contact discontinuity perpendicular to the effective gravity g, with a uniform magnetic field B parallel to the interface. Modes parallel to the field with wavelengths smaller than l_c = [B B/(d_h - d_l) g] are suppressed (where d_h and d_l are the densities of the heavy and light fluids respectively), whereas modes perpendicular to B are unaffected. We study strong fields with l_c varying between 0.01 and 0.36 of the horizontal extent of the computational domain. Even a weak field produces tension forces on small scales that are significant enough to reduce shear (as measured by the distribution of the amplitude of vorticity), which in turn reduces the mixing between fluids, and increases the rate at which bubbles and finger are displaced from the interface compared to the purely hydrodynamic case. For strong fields, the highly anisotropic nature of unstable modes produces ropes and filaments. However, at late time flow along field lines produces large scale bubbles. The kinetic and magnetic energies transverse to gravity remain in rough equipartition and increase as t^4 at early times. The growth deviates from this form once the magnetic energy in the vertical field becomes larger than the energy in the initial field. We comment on the implications of our results to Z-pinch experiments, and a variety of astrophysical systems.Comment: 25 pages, accepted by Physics of Fluids, online version of journal has high resolution figure

    Constraints on split-UED from Electroweak Precision Tests

    Full text link
    We present strongly improved electroweak precision constraints on the split-UED model. We find that the dominating effect arises from contributions to the muon decay rate by the exchange of even-numbered W-boson Kaluza-Klein modes at tree-level, which so far have not been discussed in the context of UED models. The constraints on the split-UED parameter space are translated into bounds on the mass difference of the first Kaluza-Klein mode of fermions and the lightest Kaluza-Klein mode, which will be tested is the LHC.Comment: 4 pages, 2 figure

    Manifestly N=3 supersymmetric Euler-Heisenberg action in light-cone superspace

    Get PDF
    We find a manifestly N=3 supersymmetric generalization of the four-dimensional Euler-Heisenberg (four-derivative, or F^4) part of the Born-Infeld action in light-cone gauge, by using N=3 light-cone superspace.Comment: 9 pages, LaTeX, no figures, macros include
    • …
    corecore