717 research outputs found

    Speech Recognition in Noise by Children with Hearing Loss as a Function of Signal-to-Noise Ratio

    Get PDF
    As part of a larger study, the speech recognition in continuous and interrupted noise was measured for ten children with moderate-to-severe sensorineural hearing loss (HL), ages 6 to 16 years, at varying signal-to-noise ratios (SNRs). Children with bilateral amplification received 10 sentences at each of six SNRs with the 60 dBA noise at 180 degrees azimuth and the speech at 0 degrees azimuth. Sentences were randomly selected from a corpus of 1500 sentences taken from seven thematic categories. The continuous and interrupted speech-shaped noise was filtered to match the long-term average spectrum of the sentences. The average performance-intensity (PI) functions for the interrupted and continuous noise conditions were not significantly different. Children with HL received limited benefit from the interruptions in the noise and therefore might benefit from auditory training designed to take advantage of the silent intervals in noise. Based on the average PI function, an appropriate SNR to begin auditory training would be 6 dB

    Microsatellite instability and intratumoural heterogeneity in 100 right-sided sporadic colon carcinomas

    Get PDF
    Microsatellite instability has been proposed as an alternative pathway of colorectal carcinogenesis. The aim of this study was to evaluate the interest of immunohistochemistry as a new tool for highlighting mismatch repair deficiency and to compare the results with a PCR-based microsatellite assay. A total of 100 sporadic proximal colon adenocarcinomas were analysed. The expression of hMLH1, hMSH2 and hMSH6 proteins evaluated by immunohistochemistry was altered in 39% of the cancers, whereas microsatellite instability assessed by PCR was detected in 43%. There was discordance between the two methods in eight cases. After further analyses performed on other tumoural areas for these eight cases, total concordance between the two techniques was observed (Kappa=100%). Our results demonstrate that immunohistochemistry may be as efficient as microsatellite amplification in the detection of unstable phenotype provided that at least two samples of each carcinoma are screened, because of intratumoural heterogeneity

    Prognostic Significance of Defective Mismatch Repair and BRAF V600E in Patients with Colon Cancer

    Get PDF
    Colon tumors with defective DNA mismatch repair (dMMR) have a well characterized phenotype and accounts for ~15–20% of sporadic colon cancer (CC) as well as those colon cancer patients with Lynch Syndrome. Although the presence of dMMR appears to be a favorable prognostic marker, data suggests that these patients do not respond as well to adjuvant chemotherapy

    Diminished Self-Chaperoning Activity of the ΔF508 Mutant of CFTR Results in Protein Misfolding

    Get PDF
    The absence of a functional ATP Binding Cassette (ABC) protein called the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) from apical membranes of epithelial cells is responsible for cystic fibrosis (CF). Over 90% of CF patients carry at least one mutant allele with deletion of phenylalanine at position 508 located in the N-terminal nucleotide binding domain (NBD1). Biochemical and cell biological studies show that the ΔF508 mutant exhibits inefficient biosynthetic maturation and susceptibility to degradation probably due to misfolding of NBD1 and the resultant misassembly of other domains. However, little is known about the direct effect of the Phe508 deletion on the NBD1 folding, which is essential for rational design strategies of cystic fibrosis treatment. Here we show that the deletion of Phe508 alters the folding dynamics and kinetics of NBD1, thus possibly affecting the assembly of the complete CFTR. Using molecular dynamics simulations, we find that meta-stable intermediate states appearing on wild type and mutant folding pathways are populated differently and that their kinetic accessibilities are distinct. The structural basis of the increased misfolding propensity of the ΔF508 NBD1 mutant is the perturbation of interactions in residue pairs Q493/P574 and F575/F578 found in loop S7-H6. As a proof-of-principle that the S7-H6 loop conformation can modulate the folding kinetics of NBD1, we virtually design rescue mutations in the identified critical interactions to force the S7-H6 loop into the wild type conformation. Two redesigned NBD1-ΔF508 variants exhibited significantly higher folding probabilities than the original NBD1-ΔF508, thereby partially rescuing folding ability of the NBD1-ΔF508 mutant. We propose that these observed defects in folding kinetics of mutant NBD1 may also be modulated by structures separate from the 508 site. The identified structural determinants of increased misfolding propensity of NBD1-ΔF508 are essential information in correcting this pathogenic mutant

    Fine-mapping identifies multiple prostate cancer risk loci at 5p15, one of which associates with TERT expression

    Get PDF
    Associations between single nucleotide polymorphisms (SNPs) at 5p15 and multiple cancer types have been reported. We have previously shown evidence for a strong association between prostate cancer (PrCa) risk and rs2242652 at 5p15, intronic in the telomerase reverse transcriptase (TERT) gene that encodes TERT. To comprehensively evaluate the association between genetic variation across this region and PrCa, we performed a fine-mapping analysis by genotyping 134 SNPs using a custom Illumina iSelect array or Sequenom MassArray iPlex, followed by imputation of 1094 SNPs in 22 301 PrCa cases and 22 320 controls in The PRACTICAL consortium. Multiple stepwise logistic regression analysis identified four signals in the promoter or intronic regions of TERT that independently associated with PrCa risk. Gene expression analysis of normal prostate tissue showed evidence that SNPs within one of these regions also associated with TERT expression, providing a potential mechanism for predisposition to disease

    MSH3 polymorphisms and protein levels affect CAG repeat instability in huntington's disease mice

    Get PDF
    Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)~100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases
    corecore