11 research outputs found

    Dorsal hippocampal involvement in conditioned-response timing and maintenance of temporal information in the absence of the CS

    Get PDF
    Involvement of the dorsal hippocampus (DHPC) in conditioned-response timing and maintaining temporal information across time gaps was examined in an appetitive Pavlovian conditioning task, in which rats with sham and DHPC lesions were first conditioned to a 15-s visual cue. After acquisition, the subjects received a series of non-reinforced test trials, on which the visual cue was extended (45 s) and gaps of different duration, 0.5, 2.5, and 7.5 s, interrupted the early portion of the cue. Dorsal hippocampal-lesioned subjects underestimated the target duration of 15 s and showed broader response distributions than the control subjects on the no-gap trials in the first few blocks of test, but the accuracy and precision of their timing reached the level of that of the control subjects by the last block. On the gap trials, the DHPC-lesioned subjects showed greater rightward shifts in response distributions than the control subjects. We discussed these lesion effects in terms of temporal versus non-temporal processing (response inhibition, generalisation decrement, and inhibitory conditioning)

    Effects of SKF-83566 and haloperidol on performance on progressive ratio schedules maintained by sucrose and corn oil reinforcement: quantitative analysis using a new model derived from the Mathematical Principles of Reinforcement (MPR)

    Get PDF
    Rationale Mathematical models can assist the interpretation of the effects of interventions on schedule-controlled behaviour and help to differentiate between processes that may be confounded in traditional performance measures such as response rate and the breakpoint in progressive ratio (PR) schedules. Objective The effects of a D1-like dopamine receptor antagonist, 8-bromo-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepin-7-ol hydrobromide (SKF-83566), and a D2-like receptor antagonist, haloperidol, on rats’ performance on PR schedules maintained by sucrose and corn oil reinforcers were assessed using a new model derived from Killeen’s (Behav Brain Sci 17:105–172, 1994) Mathematical Principles of Reinforcement. Method Separate groups of rats were trained under a PR schedule using sucrose or corn oil reinforcers. SKF-83566 (0.015 and 0.03 mg kg−1) and haloperidol (0.05 and 0.1 mg kg−1) were administered intraperitoneally (five administrations of each treatment). Running and overall response rates in successive ratios were analysed using the new model, and estimates of the model’s parameters were compared between treatments. Results Haloperidol reduced a (the parameter expressing incentive value) in the case of both reinforcers, but did not affect the parameters related to response time and post-reinforcement pausing. SKF-83566 reduced a and k (the parameter expressing sensitivity of post-reinforcement pausing to the prior inter-reinforcement interval) in the case of sucrose, but did not affect any of the parameters in the case of corn oil. Conclusions The results are consistent with the hypothesis that blockade of both D1-like and D2-like receptors reduces the incentive value of sucrose, whereas the incentive value of corn oil is more sensitive to blockade of D2-like than D1-like receptors
    corecore