4,305 research outputs found

    Fitting Correlated Hadron Mass Spectrum Data

    Get PDF
    We discuss fitting hadronic Green functions versus time tt to extract mass values in quenched lattice QCD. These data are themselves strongly correlated in tt. With only a limited number of data samples, the method of minimising correlated χ2\chi^2 is unreliable. We explore several methods of modelling the correlations among the data set by a few parameters which then give a stable and sensible fit even if the data sample is small. In particular these models give a reliable estimate of the goodness of fit.Comment: 14 pages, Latex text, followed by 3 postscript figures in self-unpacking file. Also available at ftp://suna.amtp.liv.ac.uk/pub/cmi/corfit

    The Nonlinear Stability of a Heavy Rigid Plate Supported by Flexible Columns

    Get PDF
    A heavy rigid platform is supported by thin elastic legs. The governing equations for large deformations are formulated and solved numerically by homotopy and quasi-Newton methods. Nonlinear phenomena such as non-uniqueness, catastrophe and hysteresis are found. A global critical load for nonlinear stability is introduced

    Effect of flexible joints on the stability and large deflections of a triangular frame

    Get PDF
    An isosceles triangular frame with rotationally resistive joints under a tip load is studied. The large in-plane deformation elastica equations are formulated. Stability analysis shows the frame can buckle symmetrically or asymmetrically. Post-buckling behavior showing limit load and hysteresis are obtained by shooting and homotopy numerical algorithms. The behavior of a frame with rigid joints is studied in detail. The effects of joint spring constant and base length are found

    Analyzing Mean Transport Equations of Turbulence and Linear Disturbances in Decaying Flows

    Get PDF
    The decay of laminar disturbances and turbulence in mean shear-free flows is studied. In laminar flows, such disturbances are linear superpositions of modes governed by the Orr-Sommerfeld equation. In turbulent flows, disturbances are described through transport equations for representative mean quantities. The link between a description based on a deterministic evolution equation and a probability-based mean transport equation is established. Because an uncertainty in initial conditions exists in the laminar as well as the turbulent regime, a probability distribution must be defined even in the laminar case. Using this probability distribution, it is shown that the exponential decay of the linear modes in the laminar regime can be related to a power law decay of both the (ensemble) mean disturbance kinetic energy and the dissipation rate. The evolution of these mean disturbance quantities is then described by transport equations similar to those for the corresponding turbulent decaying flow

    Chiral Loops and Ghost States in the Quenched Scalar Propagator

    Get PDF
    The scalar, isovector meson propagator is analyzed in quenched QCD, using the MQA pole-shifting ansatz to study the chiral limit. In addition to the expected short-range exponential falloff characteristic of a heavy scalar meson, the propagator also exhibits a longer-range, negative metric contribution which becomes pronounced for smaller quark masses. We show that this is a quenched chiral loop effect associated with the anomalous structure of the η\eta ' propagator in quenched QCD. Both the time dependence and the quark mass dependence of this effect are well-described by a chiral loop diagram corresponding to an ηπ\eta '- \pi intermediate state, which is light and effectively of negative norm in the quenched approximation. The relevant parameters of the effective Lagrangian describing the scalar sector of the quenched theory are determined.Comment: 29 pages, 10 figures, Late

    Quarkonium spin structure in lattice NRQCD

    Get PDF
    Numerical simulations of the quarkonium spin splittings are done in the framework of lattice nonrelativistic quantum chromodynamics (NRQCD). At leading order in the velocity expansion the spin splittings are of O(MQv4)O(M_Q v^4), where MQM_Q is the renormalized quark mass and v2v^2 is the mean squared quark velocity. A systematic analysis is done of all next-to-leading order corrections. This includes the addition of O(MQv6)O(M_Q v^6) relativistic interactions, and the removal of O(a2MQv4)O(a^2 M_Q v^4) discretization errors in the leading-order interactions. Simulations are done for both S- and P-wave mesons, with a variety of heavy quark actions and over a wide range of lattice spacings. Two prescriptions for the tadpole improvement of the action are also studied in detail: one using the measured value of the average plaquette, the other using the mean link measured in Landau gauge. Next-to-leading order interactions result in a very large reduction in the charmonium splittings, down by about 60% from their values at leading order. There are further indications that the velocity expansion may be poorly convergent for charmonium. Prelimary results show a small correction to the hyperfine splitting in the Upsilon system.Comment: 16 pages, REVTEX v3.1, 5 postscript figures include

    Finite size corrections in massive Thirring model

    Get PDF
    We calculate for the first time the finite size corrections in the massive Thirring model. This is done by numerically solving the equations of periodic boundary conditions of the Bethe ansatz solution. It is found that the corresponding central charge extracted from the 1/L1/L term is around 0.4 for the coupling constant of g0=π4{g_0}=-{\pi\over 4} and decreases down to zero when g0=π3{g_0}=-{\pi\over{3}}. This is quite different from the predicted central charge of the sine-Gordon model.Comment: 8 pages, Latex, 2 figure

    Tadpole renormalization and relativistic corrections in lattice NRQCD

    Get PDF
    We make a comparison of two tadpole renormalization schemes in the context of the quarkonium hyperfine splittings in lattice NRQCD. Improved gauge-field and NRQCD actions are analyzed using the mean-link u0,Lu_{0,L} in Landau gauge, and using the fourth root of the average plaquette u0,Pu_{0,P}. Simulations are done for ccˉc\bar c, bcˉb\bar c, and bbˉb\bar b systems. The hyperfine splittings are computed both at leading and at next-to-leading order in the relativistic expansion. Results are obtained at lattice spacings in the range of about 0.14~fm to 0.38~fm. A number of features emerge, all of which favor tadpole renormalization using u0,Lu_{0,L}. This includes much better scaling behavior of the hyperfine splittings in the three quarkonium systems when u0,Lu_{0,L} is used. We also find that relativistic corrections to the spin splittings are smaller when u0,Lu_{0,L} is used, particularly for the ccˉc\bar c and bcˉb\bar c systems. We also see signs of a breakdown in the NRQCD expansion when the bare quark mass falls below about one in lattice units. Simulations with u0,Lu_{0,L} also appear to be better behaved in this context: the bare quark masses turn out to be larger when u0,Lu_{0,L} is used, compared to when u0,Pu_{0,P} is used on lattices with comparable spacings. These results also demonstrate the need to go beyond tree-level tadpole improvement for precision simulations.Comment: 14 pages, 7 figures (minor changes to some phraseology and references

    The Temporally Filtered Navier-Stokes Equations: Propertes of the Residual Stress

    Get PDF
    Recent interest in the development of a unifying framework among direct numerical simulations, large-eddy simulations, and statistically averaged formulations of the Navier-Stokes equations, provides the motivation for the present paper. Toward that goal, the properties of the residual (subgrid-scale) stress of the temporally filtered Navier-Stokes equations are carefully examined. This includes the frame-invariance properties of the filtered equations and the resulting residual stress. Causal time-domain filters, parametrized by a temporal filter width 0infinity, the residual stress is equivalent to the long-time averaged stress, and the Reynolds-averaged Navier-Stokes equations are recovered from the temporally filtered equations. The predicted behavior at the asymptotic limits of filter width is further validated by numerical simulations of the temporally filtered forced, viscous Burger\u27s equation. Finally, finite filter widths are also considered, and both a priori and a posteriori analyses of temporal similarity and temporal approximate deconvolution models of the residual stress are conducted for the model problem

    Exotic meson spectroscopy from the clover action at beta = 5.85 and 6.15

    Full text link
    We repeat our original simulations of the hybrid meson spectrum using the clover action, as a check on lattice artifacts. Our results for the 1-+ masses do not substantially change. We present preliminary results for the wave function of the 1-+ state in Coulomb gauge.Comment: LATTICE98(spectrum) 3 latex pages and two postscript figures. Contribution to lattice 9
    corecore