37 research outputs found
4-Deoxy-4-fluoro-GalNAz (4FGalNAz) is a metabolic chemical reporter of O-GlcNAc modifications, highlighting the notable substrate flexibility of O-GlcNAc transferase
Bio-orthogonal chemistries have revolutionized many fields. For example, metabolic chemical reporters (MCRs) of glycosylation are analogues of monosaccharides that contain a bio-orthogonal functionality, such as azides or alkynes. MCRs are metabolically incorporated into glycoproteins by living systems, and bio-orthogonal reactions can be subsequently employed to install visualization and enrichment tags. Unfortunately, most MCRs are not selective for one class of glycosylation (e.g., N-linked vs O-linked), complicating the types of information that can be gleaned. We and others have successfully created MCRs that are selective for intracellular O-GlcNAc modification by altering the structure of the MCR and thus biasing it to certain metabolic pathways and/or O-GlcNAc transferase (OGT). Here, we attempt to do the same for the core GalNAc residue of mucin O-linked glycosylation. The most widely applied MCR for mucin O-linked glycosylation, GalNAz, can be enzymatically epimerized at the 4-hydroxyl to give GlcNAz. This results in a mixture of cell-surface and O-GlcNAc labeling. We reasoned that replacing the 4-hydroxyl of GalNAz with a fluorine would lock the stereochemistry of this position in place, causing the MCR to be more selective. After synthesis, we found that 4FGalNAz labels a variety of proteins in mammalian cells and does not perturb endogenous glycosylation pathways unlike 4FGalNAc. However, through subsequent proteomic and biochemical characterization, we found that 4FGalNAz does not widely label cell-surface glycoproteins but instead is primarily a substrate for OGT. Although these results are somewhat unexpected, they once again highlight the large substrate flexibility of OGT, with interesting and important implications for intracellular protein modification by a potential range of abiotic and native monosaccharides
The heparan sulfate sulfotransferase 3-OST3A (HS3ST3A) is a novel tumor regulator and a prognostic marker in breast cancer
International audienceHeparan sulfate (HS) proteoglycan chains are key components of the breast tumor microenvironment that critically influence the behavior of cancer cells. It is established that abnormal synthesis and processing of HS play a prominent role in tumorigenesis, albeit mechanisms remain mostly obscure. HS function is mainly controlled by sulfotransferases, and here we report a novel cellular and pathophysiological significance for the 3-O-sulfotransferase 3-OST3A (HS3ST3A), catalyzing the final maturation step of HS, in breast cancer. We show that 3-OST3A is epigenetically repressed in all breast cancer cell lines of a panel representative of distinct molecular subgroups, except in human epidermal growth factor receptor 2-positive (HER2+) sloan-kettering breast cancer (SKBR3) cells. Epigenetic mechanisms involved both DNA methylation and histone modifications, producing different repressive chromatin environments depending on the cell molecular signature. Gain and loss of function experiments by cDNA and siRNA transfection revealed profound effects of 3-OST3A expression on cell behavior including apoptosis, proliferation, response to trastuzumab in vitro and tumor growth in xenografted mice. 3-OST3A exerted dual activities acting as tumor-suppressor in lumA-michigan cancer foundation (MCF)-7 and triple negative-MD Anderson (MDA) metastatic breast (MB)-231 cells, or as an oncogenic factor in HER2+-SKBR3 cells. Mechanistically, fluorescence-resonance energy transfer-fluorescence-lifetime imaging microscopy experiments indicated that the effects of 3-OST3A in MCF-7 cells were mediated by altered interactions between HS and fibroblast growth factor-7 (FGF-7). Further, this interplay between HS and FGF-7 modulated downstream ERK, AKT and p38 cascades, suggesting that altering 3-O-sulfation affects FGFR2IIIb-mediated signaling. Corroborating our cellular data, a clinical study conducted in a cohort of breast cancer patients uncovered that, in HER2+ patients, high level expression of 3-OST3A in tumors was associated with reduced relapse-free survival. Our findings define 3-OST3A as a novel regulator of breast cancer pathogenicity, displaying tumor-suppressive or oncogenic activities in a cell-and tumor-dependent context, and demonstrate the clinical value of the HS-O-sulfotransferase 3-OST3A as a prognostic marker in HER2+ patients
Direct visualization of specifically modified extracellular glycans in living animals.
Item does not contain fulltextModification patterns of heparan sulfate coordinate protein function in metazoans, yet in vivo imaging of such non-genetically encoded structures has been impossible. Here we report a transgenic method in Caenorhabditis elegans that allows direct live imaging of specific heparan sulfate modification patterns. This experimental approach reveals a dynamic and cell-specific heparan sulfate landscape and could in principle be adapted to visualize and analyze any extracellular molecule in vivo.1 mei 201
Sustained Postnatal Skin Regeneration upon Prenatal Application of Functionalized Collagen Scaffolds
Primary closure of fetal skin in spina bifida protects the spinal cord and improves clinical outcome, but is also associated with postnatal growth malformations and spinal cord tethering. In this study, we evaluated the postnatal effects of prenatally closed full-Thickness skin defects in sheep applying collagen scaffolds with and without heparin/vascular endothelial growth factor/fibroblast growth factor 2, focusing on skin regeneration and growth. At 6 months, collagen scaffold functionalized with heparin, VEGF, and FGF2 (COL-HEP/GF) resulted in a 6.9-fold increase of the surface area of the regenerated skin opposed to 1.7 × for collagen only. Epidermal thickness increased 5.7-fold at 1 month, in line with high gene expression of S100 proteins, and decreased to 2.1 at 6 months. Increased adipose tissue and reduced scaffold degradation and number of myofibroblasts were observed for COL-HEP/GF. Gene ontology terms related to extracellular matrix (ECM) organization were enriched for both scaffold treatments. In COL-HEP/GF, ECM gene expression resembled native skin. Expression of hair follicle-related genes in COL-HEP/GF was comparable to native skin, and de novo hair follicle generation was indicated. In conclusion, in utero closure of skin defects using functionalized collagen scaffolds resulted in long-Term skin regeneration and growth. Functionalized collagen scaffolds that grow with the child may be useful for prenatal treatment of closure defects like spina bifida
Bladder Regeneration Using a Smart Acellular Collagen Scaffold with Growth Factors VEGF, FGF2 and HB-EGF
Tissue engineering may become an alternative to current bladder augmentation techniques. Large scaffolds are needed for clinically significant augmentation, but can result in fibrosis and graft shrinkage. The purpose of this study was to investigate whether smart acellular collagen-heparin scaffolds with growth factors (GFs) VEGF, FGF2, and HB-EGF enhance bladder tissue regeneration and bladder capacity in a large animal model of diseased bladder. Scaffolds of bovine type I collagen with heparin and VEGF, FGF2, and HB-EGF measuring 3.2cm in diameter were prepared. In 23 fetal sheep, a bladder exstrophy was surgically created at 79 days of gestation. One week after birth (at full term), the bladder was reconstructed by primary closure (PC group) or using a collagen-heparin scaffold with GFs (COLGF group) and compared to a historical group reconstructed with a collagen scaffold without GFs (COL group). Functional (video urodynamics) and histological evaluation was performed 1 and 6 months after bladder repair. The overall survival rate was 57%. Cystograms were normal in all animals, except for low-grade reflux in all groups. Urodynamics showed no statistically significant differences in bladder capacity and compliance between groups. Histological evaluation at 1 month revealed increased urothelium formation, improved angiogenesis, and enhanced ingrowth of smooth muscle cells (SMCs) in the COLGF group compared to the COL group. At 6 months, improved SMC ingrowth was found in the COLGF group compared to the COL group; both scaffold groups showed normal urothelial lining and standard extracellular matrix development. Bladder regeneration using a collagen-heparin scaffold with VEGF, FGF2, and HB-EGF improved bladder tissue regeneration in a large animal model of diseased bladder. Larger GF-loaded constructs need to be tested to reach clinically significant augmentation