40 research outputs found

    The Hide-and-Seek of Grain Boundaries from Moire Pattern Fringe of Two-Dimensional Graphene

    Get PDF
    Grain boundaries (GBs) commonly exist in crystalline materials and affect various properties of materials. The facile identification of GBs is one of the significant requirements for systematical study of polycrystalline materials including recently emerging two-dimensional materials. Previous observations of GBs have been performed by various tools including high resolution transmission electron microscopy. However, a method to easily identify GBs, especially in the case of low-angle GBs, has not yet been well established. In this paper, we choose graphene bilayers with a GB as a model system and investigate the effects of interlayer rotations to the identification of GBs. We provide a critical condition between adjacent moire fringe spacings, which determines the possibility of GB recognition. In addition, for monolayer graphene with a grain boundary, we demonstrate that low-angle GBs can be distinguished easily by inducing moire patterns deliberately with an artificial reference overlayopen0

    Magnetic Braking in Differentially Rotating, Relativistic Stars

    Full text link
    We study the magnetic braking and viscous damping of differential rotation in incompressible, uniform density stars in general relativity. Differentially rotating stars can support significantly more mass in equilibrium than nonrotating or uniformly rotating stars. The remnant of a binary neutron star merger or supernova core collapse may produce such a "hypermassive" neutron star. Although a hypermassive neutron star may be stable on a dynamical timescale, magnetic braking and viscous damping of differential rotation will ultimately alter the equilibrium structure, possibly leading to delayed catastrophic collapse. Here we consider the slow-rotation, weak-magnetic field limit in which E_rot << E_mag << W, where E_rot is the rotational kinetic energy, E_mag is the magnetic energy, and W is the gravitational binding energy of the star. We assume the system to be axisymmetric and solve the MHD equations in both Newtonian gravitation and general relativity. Toroidal magnetic fields are generated whenever the angular velocity varies along the initial poloidal field lines. We find that the toroidal fields and angular velocities oscillate independently along each poloidal field line, which enables us to transform the original 2+1 equations into 1+1 form and solve them along each field line independently. The incoherent oscillations on different field lines stir up turbulent-like motion in tens of Alfven timescales ("phase mixing"). In the presence of viscosity, the stars eventually are driven to uniform rotation, with the energy contained in the initial differential rotation going into heat. Our evolution calculations serve as qualitative guides and benchmarks for future, more realistic MHD simulations in full 3+1 general relativity.Comment: 26 pages, 27 graphs, 1 table, accepted for publication by Phys. Rev.

    An epigenetic clock for gestational age at birth based on blood methylation data

    Get PDF

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.</p

    Self-assembling peptides imaged by correlated liquid cell transmission electron microscopy and MALDI-imaging mass spectrometry

    No full text
    We describe the observation of stimuli-induced peptide-based nanoscale assemblies by liquid cell transmission electron microscopy (LCTEM). LCTEM offers the opportunity to directly image nanoscale materials in liquid. Despite broad interest in characterizing biological phenomena, electron beam-induced damage remains a significant problem. Concurrently, methods for verifying chemical structure during or following an LCTEM experiment have been few, with key examples limited to electron diffraction or elemental analysis of crystalline materials; this strategy is not translatable to biopolymers observed in nature. In this proof-of-concept study, oligomeric peptides are biologically or chemically stimulated within the liquid cell in a TEM to assemble into nanostructures. The resulting materials are analyzed by MALDI-imaging mass spectrometry (MALDI-IMS) to verify their identity. This approach confirms whether higher-order assemblies observed by LCTEM consist of intact peptides, verifying that observations made during the in situ experiment are because of those same peptides and not aberrant electron beam damage effects
    corecore