3,426 research outputs found

    Approaching the Ground State of Frustrated A-site Spinels: A Combined Magnetization and Polarized Neutron Scattering Study

    Get PDF
    We re-investigate the magnetically frustrated, {\it diamond-lattice-antiferromagnet} spinels FeAl2_2O4_4 and MnAl2_2O4_4 using magnetization measurements and diffuse scattering of polarized neutrons. In FeAl2_2O4_4, macroscopic measurements evidence a "cusp" in zero field-cooled susceptibility around 13~K. Dynamic magnetic susceptibility and {\it memory effect} experiments provide results that do not conform with a canonical spin-glass scenario in this material. Through polarized neutron scattering studies, absence of long-range magnetic order down to 4~K is confirmed in FeAl2_2O4_4. By modeling the powder averaged differential magnetic neutron scattering cross-section, we estimate that the spin-spin correlations in this compound extend up to the third nearest-neighbour shell. The estimated value of the Land\'{e} gg factor points towards orbital contributions from Fe2+^{2+}. This is also supported by a Curie-Weiss analysis of the magnetic susceptibility. MnAl2_2O4_4, on the contrary, undergoes a magnetic phase transition into a long-range ordered state below \approx 40~K, which is confirmed by macroscopic measurements and polarized neutron diffraction. However, the polarized neutron studies reveal the existence of prominent spin-fluctuations co-existing with long-range antiferromagnetic order. The magnetic diffuse intensity suggests a similar short range order as in FeAl2_2O4_4. Results of the present work supports the importance of spin-spin correlations in understanding magnetic response of frustrated magnets like AA-site spinels which have predominant short-range spin correlations reminiscent of the "spin liquid" state.Comment: 10 pages, 10 figures, double-column, accepted in Phys. Rev. B, 201

    Magnetisation distribution in the tetragonal phase of BaFe2As2

    Get PDF
    We have determined the spatial distribution of the magnetisation induced by a field of 9 T in the tetragonal phase of BaFe2As2 using polarised neutron diffraction. Magnetic structure factors derived from the polarisation dependence of the intensities of Bragg reflections were used to make a maximum entropy reconstruction of the distribution projected on the 110 plane. The reconstruction shows clearly that the magnetisation is confined to the region around the iron atoms and that there is no significant magnetisation associated with either the As or Ba atoms. The distribution of magnetisation around the Fe atom is significantly non-spherical with a shape which is extended in the directions in the projection. These results show that the electrons which give rise to the paramagnetic susceptibility are confined to the Fe atoms their distribution suggests that they occupy 3d t_2g type orbitals with about 60% in those of xy symmetry

    Stochastic Language Generation in Dialogue using Recurrent Neural Networks with Convolutional Sentence Reranking

    Full text link
    The natural language generation (NLG) component of a spoken dialogue system (SDS) usually needs a substantial amount of handcrafting or a well-labeled dataset to be trained on. These limitations add significantly to development costs and make cross-domain, multi-lingual dialogue systems intractable. Moreover, human languages are context-aware. The most natural response should be directly learned from data rather than depending on predefined syntaxes or rules. This paper presents a statistical language generator based on a joint recurrent and convolutional neural network structure which can be trained on dialogue act-utterance pairs without any semantic alignments or predefined grammar trees. Objective metrics suggest that this new model outperforms previous methods under the same experimental conditions. Results of an evaluation by human judges indicate that it produces not only high quality but linguistically varied utterances which are preferred compared to n-gram and rule-based systems.Comment: To be appear in SigDial 201

    Magnetic anisotropy in hole-doped superconducting Ba 0.67K 0.33Fe 2As2 probed by polarized inelastic neutron scattering

    Get PDF
    We use polarized inelastic neutron scattering (INS) to study spin excitations of optimally hole-doped superconductor Ba0.67_{0.67}K0.33_{0.33}Fe2_2As2_{2} (Tc=38T_c=38 K). In the normal state, the imaginary part of the dynamic susceptibility, χ(Q,ω)\chi^{\prime\prime}(Q,\omega), shows magnetic anisotropy for energies below \sim7 meV with c-axis polarized spin excitations larger than that of the in-plane component. Upon entering into the superconducting state, previous unpolarized INS experiments have shown that spin gaps at \sim5 and 0.75 meV open at wave vectors Q=(0.5,0.5,0)Q=(0.5,0.5,0) and (0.5,0.5,1)(0.5,0.5,1), respectively, with a broad neutron spin resonance at Er=15E_r=15 meV. Our neutron polarization analysis reveals that the large difference in spin gaps is purely due to different spin gaps in the c-axis and in-plane polarized spin excitations, resulting resonance with different energy widths for the c-axis and in-plane spin excitations. The observation of spin anisotropy in both opitmally electron and hole-doped BaFe2_2As2_2 is due to their proximity to the AF ordered BaFe2_2As2_2 where spin anisotropy exists below TNT_N.Comment: 5 pages, 4 figure

    Spin-Lattice Coupling in K0.8Fe1.6Se2 and KFe2Se2: Inelastic Neutron Scattering and ab-initio Phonon Calculations

    Get PDF
    We report measurements of the temperature dependence of phonon densities of states in K0.8Fe1.6Se2 using inelastic neutron scattering technique. While cooling down to 150 K, a phonon peak splitting around 25 meV is observed and a new peak appears at 31 meV. The measurements support the recent Raman and infra-red measurements indicating a lowering of symmetry of K0.8Fe1.6Se2 upon cooling below 250 K. Ab-initio phonon calculations have been carried out for K0.8Fe1.6Se2 and KFe2Se2. The comparison of the phonon spectra as obtained from the magnetic as well as non magnetic calculations show pronounced differences. We show that in the two calculations the energy range of the vibrational contribution from both Fe and Se are quite different. We conclude that Fe magnetism is correlated to the phonon dynamics and it plays an important role in stabilizing the structure of K0.8Fe1.6Se2 as well as that of KFe2Se2. The calculations highlight the presence of low energy librational modes in K0.8Fe1.6Se2 as compared to KFe2Se2.Comment: 22 pages, 3 Tables, 7 Figure

    Does the 2D Hubbard Model Really Show d-Wave Superconductivity?

    Full text link
    Some issues concerning the question if the two-dimensional Hubbard model really show d-wave superconductivity are briefly discussed.Comment: Revtex, no figure

    Magnetic order in CaFe1-xCoxAsF (x = 0, 0.06, 0.12) superconductor compounds

    Get PDF
    A Neutron Powder Diffraction (NPD) experiment has been performed to investigate the structural phase transition and magnetic order in CaFe1-xCoxAsF superconductor compounds (x = 0, 0.06, 0.12). The parent compound CaFeAsF undergoes a tetragonal to orthorhombic phase transition at 134(3) K, while the magnetic order in form of a spin-density wave (SDW) sets in at 114(3) K. The antiferromagnetic structure of the parent compound has been determined with a unique propagation vector k = (1,0,1) and the Fe saturation moment of 0.49(5)uB aligned along the long a-axis. With increasing Co doping, the long range antiferromagnetic order has been observed to coexist with superconductivity in the orthorhombic phase of the underdoped CaFe0.94Co0.06AsF with a reduced Fe moment (0.15(5)uB). Magnetic order is completely suppressed in optimally doped CaFe0.88Co0.12AsF. We argue that the coexistence of SDW and superconductivity might be related to mesoscopic phase separation.Comment: 4pages, 4figure
    corecore