2,372 research outputs found

    Unitary ambiguity in the extraction of the E2/M1 ratio for the γNΔ\gamma N\leftrightarrow\Delta transition

    Full text link
    The resonant electric quadrupole amplitude in the transition γNΔ(1232)\gamma N\leftrightarrow\Delta(1232) is of great interest for the understanding of baryon structure. Various dynamical models have been developed to extract it from the corresponding photoproduction multipole of pions on nucleons. It is shown that once such a model is specified, a whole class of unitarily equivalent models can be constructed, all of them providing exactly the same fit to the experimental data. However, they may predict quite different resonant amplitudes. Therefore, the extraction of the E2/M1(γNΔ\gamma N\leftrightarrow\Delta) ratio (bare or dressed) which is based on a dynamical model using a largely phenomenological πN\pi N interaction is not unique.Comment: 10 pages revtex including 4 postscript figure

    On the extraction of electromagnetic properties of the Delta(1232) excitation from pion photoproduction

    Full text link
    Several methods for the treatment of pion photoproduction in the region of the Delta(1232) resonance are discussed, in particular the effective Lagrangian approach and the speed plot analysis are compared to a dynamical treatment. As a main topic, we discuss the extraction of the genuine resonance parts of the magnetic dipole and electric quadrupole multipoles of the electromagnetic excitation of the resonance. To this end, we try to relate the various values for the ratio R_{EM} of the E2 to M1 multipole excitation strengths for the Delta(1232) resonance as extracted by the different methods to corresponding ratios of a dynamical model. Moreover, it is confirmed that all methods for extracting resonance properties suffer from an unitary ambiguity which is due to some phenomenological contributions entering the models.Comment: 22 pages revtex including 7 postscript figure

    Possible chiral phase transition in two-dimensional solid 3^3He

    Full text link
    We study a spin system with two- and four-spin exchange interactions on the triangular lattice, which is a possible model for the nuclear magnetism of solid 3^3He layers. It is found that a novel spin structure with scalar chiral order appears if the four-spin interaction is dominant. Ground-state properties are studied using the spin-wave approximation. A phase transition concerning the scalar chirality occurs at a finite temperature, even though the dimensionality of the system is two and the interaction has isotropic spin symmetry. Critical properties of this transition are studied with Monte Carlo simulations in the classical limit.Comment: 4 pages, Revtex, 4 figures, to appear in Phys.Rev.Let

    A measurement of the axial form factor of the nucleon by the p(e,e'pi+)n reaction at W=1125 MeV

    Full text link
    The reaction p(e,e'pi+)n was measured at the Mainz Microtron MAMI at an invariant mass of W=1125 MeV and four-momentum transfers of Q^2=0.117, 0.195 and 0.273 (GeV/c)^2. For each value of Q^2, a Rosenbluth separation of the transverse and longitudinal cross sections was performed. An effective Lagrangian model was used to extract the `axial mass' from experimental data. We find a value of M_A=(1.077+-0.039) GeV which is (0.051+-0.044) GeV larger than the axial mass known from neutrino scattering experiments. This is consistent with recent calculations in chiral perturbation theory.Comment: 14 pages, 5 figures, uses elsart.cl

    Field theory of nucleon to higher-spin baryon transitions

    Get PDF
    We discuss the nucleon to higher-spin NN- and Δ\Delta-resonance transitions by pions and photons. The higher-spin baryons are described by Rarita-Schwinger fields and, as we argue, this imposes a stringent consistency requirement on the form of the couplings. Popular πNΔ\pi N\Delta and γNΔ\gamma N\Delta couplings are inconsistent from this point of view. We construct examples of consistent interactions with the same nonrelativistic limit as the conventional ones.Comment: 5 pages, Revtex, 1 PostScript figure; published versio

    Pregnant women with bronchial asthma benefit from progressive muscle relaxation: A randomized, prospective, controlled trial

    Get PDF
    Background: Asthma is a serious medical problem in pregnancy and is often associated with stress, anger and poor quality of life. The aim of this study was to determine the efficacy of progressive muscle relaxation (PMR) on change in blood pressure, lung parameters, heart rate, anger and health-related quality of life in pregnant women with bronchial asthma. Methods: We treated a sample of 64 pregnant women with bronchial asthma from the local population in an 8-week randomized, prospective, controlled trial. Thirty-two were selected for PMR, and 32 received a placebo intervention. The systolic blood pressure, forced expiratory volume in the first second, peak expiratory flow and heart rate were tested, and the State-Trait Anger Expression Inventory and Health Survey (SF-36) were employed. Results: According to the intend-to-treat principle, a significant reduction in systolic blood pressure and a significant increase in both forced expiratory volume in the first second and peak expiratory flow were observed after PMR. The heart rate showed a significant increase in the coefficient of variation, root mean square of successive differences and high frequency ranges, in addition to a significant reduction in low and middle frequency ranges. A significant reduction on three of five State-Trait Anger Expression Inventory scales, and a significant increase on seven of eight SF-36 scales were observed. Conclusions: PMR appears to be an effective method to improve blood pressure, lung parameters and heart rate, and to decrease anger levels, thus enhancing health-related quality of life in pregnant women with bronchial asthma. Copyright (c) 2006 S. Karger AG, Basel

    The pion photoproduction in the \Delta(1232) region

    Full text link
    We investigate the pion photoproduction in the \Delta(1232) region in the framework of an effective Lagrangian including pions, nulceon and \Delta(1232). We work to third order in a small scale expansion with both mπm_{\pi} and MΔMNM_{\Delta}-M_N treated as light scales. We note that in the Δ\Delta region, straightward power counting breaks as the amplitudes become very large, to deal with this problem, we suggest that the appropriate way to compare theoretical calculations with experimental data is via weighted integrals of the amplitudes through the Δ\Delta region.Comment: 34 pages and 5 figures,new counterterms arr adde

    Accurate Optimization of Weighted Nuclear Norm for Non-Rigid Structure from Motion

    Get PDF
    Fitting a matrix of a given rank to data in a least squares sense can be done very effectively using 2nd order methods such as Levenberg-Marquardt by explicitly optimizing over a bilinear parameterization of the matrix. In contrast, when applying more general singular value penalties, such as weighted nuclear norm priors, direct optimization over the elements of the matrix is typically used. Due to non-differentiability of the resulting objective function, first order sub-gradient or splitting methods are predominantly used. While these offer rapid iterations it is well known that they become inefficent near the minimum due to zig-zagging and in practice one is therefore often forced to settle for an approximate solution. In this paper we show that more accurate results can in many cases be achieved with 2nd order methods. Our main result shows how to construct bilinear formulations, for a general class of regularizers including weighted nuclear norm penalties, that are provably equivalent to the original problems. With these formulations the regularizing function becomes twice differentiable and 2nd order methods can be applied. We show experimentally, on a number of structure from motion problems, that our approach outperforms state-of-the-art methods

    Coherent Compton scattering on light nuclei in the delta resonance region

    Full text link
    Coherent Compton scattering on light nuclei in the delta resonance region is studied in the impulse approximation and is shown to be a sensitive probe of the in-medium properties of the delta resonance. The elementary amplitude on a single nucleon is calculated from the unitary K-matrix approach developed previously. Modifications of the properties of the delta resonance due to the nuclear medium are accounted for through the self-energy operator of the delta, calculated from the one-pion loop. The dominant medium effects such as the Pauli blocking, mean-field modification of the nucleon and delta masses, and particle-hole excitations in the pion propagator are consistently included in nuclear matter.Comment: 30 pages, 11 figures, accepted for publication in Phys. Rev.
    corecore