31 research outputs found

    Effect of soil saturation on denitrification in a grassland soil

    Get PDF
    Nitrous oxide (N2O) is of major importance as a greenhouse gas and precursor of ozone (O3) destruction in the stratosphere mostly produced in soils. The soil-emitted N2O is generally predominantly derived from denitrification and, to a smaller extent, nitrification, both processes controlled by environmental factors and their interactions, and are influenced by agricultural management. Soil water content expressed as water-filled pore space (WFPS) is a major controlling factor of emissions and its interaction with compaction, has not been studied at the micropore scale. A laboratory incubation was carried out at different saturation levels for a grassland soil and emissions of N2O and N2 were measured as well as the isotopocules of N2O. We found that flux variability was larger in the less saturated soils probably due to nutrient distribution heterogeneity created from soil cracks and consequently nutrient hot spots. The results agreed with denitrification as the main source of fluxes at the highest saturations, but nitrification could have occurred at the lower saturation, even though moisture was still high (71% WFSP). The isotopocules data indicated isotopic similarities in the wettest treatments vs. the two drier ones. The results agreed with previous findings where it is clear there are two N pools with different dynamics: added N producing intense denitrification vs. soil N resulting in less isotopic fractionation

    The North Wyke Farm Platform: effect of temperate grassland farming systems on soil moisture contents, runoff and associated water quality dynamics

    Get PDF
    This is the final version of the article. Available from Wiley via the DOI in this record.The North Wyke Farm Platform was established as a United Kingdom national capability for collaborative research, training and knowledge exchange in agro-environmental sciences. Its remit is to research agricultural productivity and ecosystem responses to different management practices for beef and sheep production in lowland grasslands. A system based on permanent pasture was implemented on three 21-ha farmlets to obtain baseline data on hydrology, nutrient cycling and productivity for 2 years. Since then two farmlets have been modified by either (i) planned reseeding with grasses that have been bred for enhanced sugar content or deep-rooting traits or (ii) sowing grass and legume mixtures to reduce nitrogen fertilizer inputs. The quantities of nutrients that enter, cycle within and leave the farmlets were evaluated with data recorded from sensor technologies coupled with more traditional field study methods. We demonstrate the potential of the farm platform approach with a case study in which we investigate the effects of the weather, field topography and farm management activity on surface runoff and associated pollutant or nutrient loss from soil. We have the opportunity to do a full nutrient cycling analysis, taking account of nutrient transformations in soil, and flows to water and losses to air. The NWFP monitoring system is unique in both scale and scope for a managed land-based capability that brings together several technologies that allow the effect of temperate grassland farming systems on soil moisture levels, runoff and associated water quality dynamics to be studied in detail. HIGHLIGHTS: Can meat production systems be developed that are productive yet minimize losses to the environment?The data are from an intensively instrumented capability, which is globally unique and topical.We use sensing technologies and surveys to show the effect of pasture renewal on nutrient losses.Platforms provide evidence of the effect of meteorology, topography and farm activity on nutrient loss.The North Wyke Farm Platform is a UK National Capability supported by the Biotechnology and Biological Sciences Research Council (BBSRC BB/J004308/1)

    Roles of instrumented farm-scale trials in trade-off assessments of pasture-based ruminant production systems

    Get PDF
    For livestock production systems to play a positive role in global food security, the balance between their benefits and disbenefits to society must be appropriately managed. Based on the evidence provided by field-scale randomised controlled trials around the world, this debate has traditionally centred on the concept of economic-environmental trade-offs, of which existence is theoretically assured when resource allocation is perfect on the farm. Recent research conducted on commercial farms indicates, however, that the economic-environmental nexus is not nearly as straightforward in the real world, with environmental performances of enterprises often positively correlated with their economic profitability. Using high-resolution primary data from the North Wyke Farm Platform, an intensively instrumented farm-scale ruminant research facility located in southwest United Kingdom, this paper proposes a novel, information-driven approach to carry out comprehensive assessments of economic-environmental trade-offs inherent within pasture-based cattle and sheep production systems. The results of a data-mining exercise suggest that a potentially systematic interaction exists between 'soil health', ecological surroundings and livestock grazing, whereby a higher level of soil organic carbon (SOC) stock is associated with a better animal performance and less nutrient losses into watercourses, and a higher stocking density with greater botanical diversity and elevated SOC. We contend that a combination of farming system-wide trials and environmental instrumentation provides an ideal setting for enrolling scientifically sound and biologically informative metrics for agricultural sustainability, through which agricultural producers could obtain guidance to manage soils, water, pasture and livestock in an economically and environmentally acceptable manner. Priority areas for future farm-scale research to ensure long-term sustainability are also discussed

    Not Available

    No full text
    The adaptive potential of livestock under a warming climate is increasingly relevant in relation to the growing pressure of global food security. Studies on heat tolerance demonstrate the interplay of adaptation and acclimatization in functional traits, for example, a reduction in body size and enhanced tolerance in response to a warming climate. However, current lack of understanding of functional traits and phylogenetic history among phenotypically distinct populations constrains predictions of climate change impact. Here, we demonstrate evidence of parallel evolution in adaptive tolerance to heat stress in dwarf cattle breeds (DCB, Bos taurus indicus) and compare their thermoregulatory responses with those in standard size cattle breeds (SCB, crossbred, Bos taurus indicus Ă— Bos taurus taurus). We measured vital physiological, hematological, biochemical, and gene expression changes in DCB and SCB and compared the molecular phylogeny using mitochondrial genome (mitogenome) analysis. Our results show that SCB can acclimatize in the short term to higher temperatures but reach their tolerance limit under prevailing tropical conditions, while DCB is adapted to the warmer climate. Increased hemoglobin concentration, reduced cellular size, and smaller body size enhance thermal tolerance. Mitogenome analysis revealed that different lineages of DCB have evolved reduced size independently, as a parallel adaptation to heat stress. The results illustrate mechanistic ways of dwarfing, body size-dependent tolerance, and differential fitness in a large mammal species under harsh field conditions, providing a background for comparing similar populations during global climate change. These demonstrate the value of studies combining functional, physiological, and evolutionary approaches to delineate adaptive potential and plasticity in domestic species. We thus highlight the value of locally adapted breeds as a reservoir of genetic variation contributing to the global domestic genetic resource pool that will become increasingly important for livestock production systems under a warming climate.The adaptive potential of livestock under a warming climate is increasingly relevant in relation to the growing pressure of global food security. Studies on heat tolerance demonstrate the interplay of adaptation and acclimatization in functional traits, for example, a reduction in body size and enhanced tolerance in response to a warming climate. However, current lack of understanding of functional traits and phylogenetic history among phenotypically distinct populations constrains predictions of climate change impact. Here, we demonstrate evidence of parallel evolution in adaptive tolerance to heat stress in dwarf cattle breeds (DCB, Bos taurus indicus) and compare their thermoregulatory responses with those in standard size cattle breeds (SCB, crossbred, Bos taurus indicus Ă— Bos taurus taurus). We measured vital physiological, hematological, biochemical, and gene expression changes in DCB and SCB and compared the molecular phylogeny using mitochondrial genome (mitogenome) analysis. Our results show that SCB can acclimatize in the short term to higher temperatures but reach their tolerance limit under prevailing tropical conditions, while DCB is adapted to the warmer climate. Increased hemoglobin concentration, reduced cellular size, and smaller body size enhance thermal tolerance. Mitogenome analysis revealed that different lineages of DCB have evolved reduced size independently, as a parallel adaptation to heat stress. The results illustrate mechanistic ways of dwarfing, body size-dependent tolerance, and differential fitness in a large mammal species under harsh field conditions, providing a background for comparing similar populations during global climate change. These demonstrate the value of studies combining functional, physiological, and evolutionary approaches to delineate adaptive potential and plasticity in domestic species. We thus highlight the value of locally adapted breeds as a reservoir of genetic variation contributing to the global domestic genetic resource pool that will become increasingly important for livestock production systems under a warming climate.Not Availabl
    corecore