19 research outputs found

    The Use of a Stringent Selection System Allows the Identification of DNA Elements that Augment Gene Expression

    Get PDF
    The use of high stringency selection systems often results in the induction of very few recombinant mammalian cell lines, which limits the ability to isolate a cell line with favorable characteristics. The employment of for instance STAR elements in DNA constructs elevates the induced number of colonies and also the protein expression levels in these colonies. Here, we describe a method to systematically identify genomic DNA elements that are able to induce many stably transfected mammalian cell lines. We isolated genomic DNA fragments upstream from the human Rb1 and p73 gene loci and cloned them around an expression cassette that contains a very stringent selection marker. Due to the stringency of the selection marker, hardly any colony survives without flanking DNA elements. We tested fourteen ~3500 bp DNA stretches from the Rb1 and p73 loci. Only two ~3500 bp long DNA fragments, called Rb1E and Rb1F, induced many colonies in the context of the stringent selection system and these colonies displayed high protein expression levels. Functional analysis showed that the Rb1 DNA fragments contained no enhancer, promoter, or STAR activity. Our data show the potential of a methodology to identify novel gene expression augmenting DNA elements in an unbiased manner

    Novel Functional MAR Elements of Double Minute Chromosomes in Human Ovarian Cells Capable of Enhancing Gene Expression

    Get PDF
    Double minute chromosomes or double minutes (DMs) are cytogenetic hallmarks of extrachromosomal genomic amplification and play a critical role in tumorigenesis. Amplified copies of oncogenes in DMs have been associated with increased growth and survival of cancer cells but DNA sequences in DMs which are mostly non-coding remain to be characterized. Following sequencing and bioinformatics analyses, we have found 5 novel matrix attachment regions (MARs) in a 682 kb DM in the human ovarian cancer cell line, UACC-1598. By electrophoretic mobility shift assay (EMSA), we determined that all 5 MARs interact with the nuclear matrix in vitro. Furthermore, qPCR analysis revealed that these MARs associate with the nuclear matrix in vivo, indicating that they are functional. Transfection of MARs constructs into human embryonic kidney 293T cells showed significant enhancement of gene expression as measured by luciferase assay, suggesting that the identified MARS, particularly MARs 1 to 4, regulate their target genes in vivo and are potentially involved in DM-mediated oncogene activation

    MAR elements and transposons for improved transgene integration and expression.

    Get PDF
    Reliable and long-term expression of transgenes remain significant challenges for gene therapy and biotechnology applications, especially when antibiotic selection procedures are not applicable. In this context, transposons represent attractive gene transfer vectors because of their ability to promote efficient genomic integration in a variety of mammalian cell types. However, expression from genome-integrating vectors may be inhibited by variable gene transcription and/or silencing events. In this study, we assessed whether inclusion of two epigenetic control elements, the human Matrix Attachment Region (MAR) 1-68 and X-29, in a piggyBac transposon vector, may lead to more reliable and efficient expression in CHO cells. We found that addition of the MAR 1-68 at the center of the transposon did not interfere with transposition frequency, and transgene expressing cells could be readily detected from the total cell population without antibiotic selection. Inclusion of the MAR led to higher transgene expression per integrated copy, and reliable expression could be obtained from as few as 2-4 genomic copies of the MAR-containing transposon vector. The MAR X-29-containing transposons was found to mediate elevated expression of therapeutic proteins in polyclonal or monoclonal CHO cell populations using a transposable vector devoid of selection gene. Overall, we conclude that MAR and transposable vectors can be used to improve transgene expression from few genomic transposition events, which may be useful when expression from a low number of integrated transgene copies must be obtained and/or when antibiotic selection cannot be applied

    Molecular characterization of a human matrix attachment region epigenetic regulator.

    Get PDF
    Matrix attachment regions (MAR) generally act as epigenetic regulatory sequences that increase gene expression, and they were proposed to partition chromosomes into loop-forming domains. However, their molecular mode of action remains poorly understood. Here, we assessed the possible contribution of the AT-rich core and adjacent transcription factor binding motifs to the transcription augmenting and anti-silencing effects of human MAR 1-68. Either flanking sequences together with the AT-rich core were required to obtain the full MAR effects. Shortened MAR derivatives retaining full MAR activity were constructed from combinations of the AT-rich sequence and multimerized transcription factor binding motifs, implying that both transcription factors and the AT-rich microsatellite sequence are required to mediate the MAR effect. Genomic analysis indicated that MAR AT-rich cores may be depleted of histones and enriched in RNA polymerase II, providing a molecular interpretation of their chromatin domain insulator and transcriptional augmentation activities
    corecore