14 research outputs found

    A Novel Manganese Efflux System, YebN, Is Required for Virulence by Xanthomonas oryzae pv. oryzae

    Get PDF
    Manganese ions (Mn2+) play a crucial role in virulence and protection against oxidative stress in bacterial pathogens. Such pathogens appear to have evolved complex mechanisms for regulating Mn2+ uptake and efflux. Despite numerous studies on Mn2+ uptake, however, only one efflux system has been identified to date. Here, we report on a novel Mn2+ export system, YebN, in Xanthomonas oryzae pv. oryzae (Xoo), the causative agent of bacterial leaf blight. Compared with wild-type PXO99, the yebN mutant was highly sensitive to Mn2+ and accumulated high concentrations of intracellular manganese. In addition, we found that expression of yebN was positively regulated by Mn2+ and the Mn2+-dependent transcription regulator, MntR. Interestingly, the yebN mutant was more tolerant to methyl viologen and H2O2 in low Mn2+ medium than PXO99, but more sensitive in high Mn2+ medium, implying that YebN plays an important role in Mn2+ homoeostasis and detoxification of reactive oxygen species (ROS). Notably, deletion of yebN rendered Xoo sensitive to hypo-osmotic shock, suggesting that YebN may protect against such stress. That mutation of yebN substantially reduced the Xoo growth rate and lesion formation in rice implies that YebN could be involved in Xoo fitness in host. Although YebN has two DUF204 domains, it lacks homology to any known metal transporter. Hence, this is the first report of a novel metal export system that plays essential roles in hypo-osmotic and oxidative stress, and virulence. Our results lay the foundations for elucidating the complex and fascinating relationship between metal homeostasis and host-pathogen interactions

    Manganese uptake in marine bacteria; the novel MntX transporter is widespread in Roseobacters, Vibrios, Alteromonadales and the SAR11 and SAR116 clades

    No full text
    We showed that two very different manganese transporters occur in various important genera of marine bacteria. The ABC transporter encoded by sitABCD of the model Roseobacter-clade bacterium Ruegeria pomeroyi DSS-3 is required for Mn(2+) import and was repressed by the Mur (Manganese uptake regulator) transcriptional regulator in Mn-replete media. Most genome-sequenced Roseobacter strains contain SitABCD, which are in at least two sub-groups, judged by their amino-acid sequences. However, a few Roseobacters, for example, Roseovarius nubinhibens, lack sitABCD, but these contain another gene, mntX, which encodes a predicted inner membrane polypeptide and is preceded by cis-acting Mur-responsive MRS sequences. It was confirmed directly that mntX of Roseovarius nubinhibens encodes a manganese transporter that was required for growth in Mn-depleted media and that its expression was repressed by Mur in Mn-replete conditions. MntX homologues occur in the deduced proteomes of several bacterial species. Strikingly, all of these live in marine habitats, but are in distantly related taxonomic groups, in the γ- and α-proteobacteria. Notably, MntX was prevalent in nearly all strains of Vibrionales, including the important pathogen, Vibrio cholerae. It also occurs in a strain of the hugely abundant Candidatus Pelagibacter (SAR11), and in another populous marine bacterium, Candidatus Puniceispirillum marinum (SAR116). Consistent with this, MntX was abundant in marine bacterial metagenomes, with one sub-type occurring in an as-yet unknown bacterial clade
    corecore