11 research outputs found

    Tough acts to follow: the challenges to science teachers presented by biotechnological progress

    No full text
    The public controversies associated with biotechnological progress (genetic modification, cloning, and so forth) increasingly impact upon biology teaching in school; teachers find themselves engaged in discussions with pupils on value-laden issues deriving from the social and ethical implications of the 'new science'. The research described in this paper focused upon the thinking of a sample of 41 biology teachers as they endeavoured to implement the first year of the new Scottish Advanced Higher Biology course and to face the challenges associated with these controversies. Following questionnaire returns, the investigation employed semistructured, in-depth interviews with 10 teachers and, separately, with their 61 pupils (17-18 years of age) and was part of a medium-term to long-term evaluation of a university summer school that had endeavoured to update these teachers on recent biotechnological advances. While teachers were found to be fairly positively disposed to handling discussion of such contentious matters, they were none-too-clear as to its precise merits and functions; many lack confidence in handling discussion. The research indicates that much needs to be tackled by way of professional development for science teachers now engaged in dimensions new to science teaching

    Sardonic science? The resistance to more humanistic forms of science education

    No full text
    Resistance to more humanistic forms of science education is an endemic and persistent feature of university scientists as well as school science teachers. This article argues that science education researchers should pay more attention to its origins and to the subtleties of its stubborn influence. The paper explores some of the imperatives which dominate the continuing practices of teachers; the linkages between school and university science; and re-considers the relationships between learning science, learning to do science and learning about science. It draws on recent, prominent publications, as well as neglected and rather more contentious material, to underline the unhelpfully narrow view of science held by those who defend the traditional disciplinary influences of biology, chemistry and physics. Suggestions are made as to where those of a more radical and determined disposition should direct their attention in the interests of improved education, vital scientific progress as well as human survival. It is argued that university science must change in order to ensure that teachers better help their students to learn, do and appreciate science

    Scepticism and trust: two counterpoint essentials in science education for complex socio-scientific issues

    No full text
    In this response to Tom G. K. Bryce and Stephen P. Day’s (Cult Stud Sci Educ. doi:10.1007/s11422-013-9500-0, 2013) original article, I share with them their interest in the teaching of climate change in school science, but I widen it to include other contemporary complex socio-scientific issues that also need to be discussed. I use an alternative view of the relationship between science, technology and society, supported by evidence from both science and society, to suggest science-informed citizens as a more realistic outcome image of school science than the authors’ one of mini-scientists. The intellectual independence of students Bryce and Day assume, and intend for school science, is countered with an active intellectual dependence. It is only in relation to emerging and uncertain scientific contexts that students should be taught about scepticism, but they also need to learn when, and why to trust science as an antidote to the expressions of doubting it. Some suggestions for pedagogies that could lead to these new learnings are made. The very recent fifth report of the IPCC answers many of their concerns about climate change
    corecore