1,096 research outputs found
Sex-Differential Herbivory in Androdioecious Mercurialis annua
Males of plants with separate sexes are often more prone to attack by herbivores than females. A common explanation for this pattern is that individuals with a greater male function suffer more from herbivory because they grow more quickly, drawing more heavily on resources for growth that might otherwise be allocated to defence. Here, we test this ‘faster-sex’ hypothesis in a species in which males in fact grow more slowly than hermaphrodites, the wind-pollinated annual herb Mercurialis annua. We expected greater herbivory in the faster-growing hermaphrodites. In contrast, we found that males, the slower sex, were significantly more heavily eaten by snails than hermaphrodites. Our results thus reject the faster-sex hypothesis and point to the importance of a trade-off between defence and reproduction rather than growth
Recommended from our members
Measurements of the transverse-momentum-dependent cross sections of J /ψ production at mid-rapidity in proton+proton collisions at s =510 and 500 GeV with the STAR detector
We present measurements of the differential cross sections of inclusive J/ψ meson production as a function of transverse momentum (pTJ/ψ) using the μ+μ- and e+e- decay channels in proton+proton collisions at center-of-mass energies of 510 and 500 GeV, respectively, recorded by the STAR detector at the Relativistic Heavy Ion Collider. The measurement from the μ+μ- channel is for
Recommended from our members
Bulk properties of the system formed in Au+Au collisions at sNN =14.5 GeV at the BNL STAR detector
We report systematic measurements of bulk properties of the system created in Au+Au collisions at sNN=14.5 GeV recorded by the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The transverse momentum spectra of π±, K±, and p(p) are studied at midrapidity (|y|<0.1) for nine centrality intervals. The centrality, transverse momentum (pT), and pseudorapidity (η) dependence of inclusive charged particle elliptic flow (v2), and rapidity-odd charged particles directed flow (v1) results near midrapidity are also presented. These measurements are compared with the published results from Au+Au collisions at other energies, and from Pb+Pb collisions at sNN=2.76 TeV. The results at sNN=14.5 GeV show similar behavior as established at other energies and fit well in the energy dependence trend. These results are important as the 14.5-GeV energy fills the gap in μB, which is of the order of 100 MeV, between sNN=11.5 and 19.6 GeV. Comparisons of the data with UrQMD and AMPT models show poor agreement in general
Recommended from our members
Charge-dependent pair correlations relative to a third particle in p + Au and d + Au collisions at RHIC
Quark interactions with topological gluon configurations can induce chirality imbalance and local parity violation in quantum chromodynamics. This can lead to electric charge separation along the strong magnetic field in relativistic heavy-ion collisions – the chiral magnetic effect (CME). We report measurements by the STAR collaboration of a CME-sensitive observable in p+Au and d+Au collisions at 200 GeV, where the CME is not expected, using charge-dependent pair correlations relative to a third particle. We observe strong charge-dependent correlations similar to those measured in heavy-ion collisions. This bears important implications for the interpretation of the heavy-ion data
Recommended from our members
Measurement of inclusive J/ψ suppression in Au+Au collisions at sNN=200 GeV through the dimuon channel at STAR
J/ψ suppression has long been considered a sensitive signature of the formation of the Quark-Gluon Plasma (QGP) in relativistic heavy-ion collisions. In this letter, we present the first measurement of inclusive J/ψ production at mid-rapidity through the dimuon decay channel in Au+Au collisions at sNN=200 GeV with the STAR experiment. These measurements became possible after the installation of the Muon Telescope Detector was completed in 2014. The J/ψ yields are measured in a wide transverse momentum (pT) range of 0.15 GeV/c to 12 GeV/c from central to peripheral collisions. They extend the kinematic reach of previous measurements at RHIC with improved precision. In the 0-10% most central collisions, the J/ψ yield is suppressed by a factor of approximately 3 for pT>5 GeV/c relative to that in p+p collisions scaled by the number of binary nucleon-nucleon collisions. The J/ψ nuclear modification factor displays little dependence on pT in all centrality bins. Model calculations can qualitatively describe the data, providing further evidence for the color-screening effect experienced by J/ψ mesons in the QGP
Recommended from our members
Observation of Excess J/ψ Yield at Very Low Transverse Momenta in Au+Au Collisions at sqrt[s_{NN}]=200 GeV and U+U Collisions at sqrt[s_{NN}]=193 GeV.
We report on the first measurements of J/ψ production at very low transverse momentum (p_{T}<0.2 GeV/c) in hadronic Au+Au collisions at sqrt[s_{NN}]=200 GeV and U+U collisions at sqrt[s_{NN}]=193 GeV. Remarkably, the inferred nuclear modification factor of J/ψ at midrapidity in Au+Au (U+U) collisions reaches about 24 (52) for p_{T}<0.05 GeV/c in the 60%-80% collision centrality class. This noteworthy enhancement cannot be explained by hadronic production accompanied by cold and hot medium effects. In addition, the dN/dt distribution of J/ψ for the very low p_{T} range is presented for the first time. The distribution is consistent with that expected from the Au nucleus and shows a hint of interference. Comparison of the measurements to theoretical calculations of coherent production shows that the excess yield can be described reasonably well and reveals a partial disruption of coherent production in semicentral collisions, perhaps due to the violent hadronic interactions. Incorporating theoretical calculations, the results strongly suggest that the dramatic enhancement of J/ψ yield observed at extremely low p_{T} originates from coherent photon-nucleus interactions. In particular, coherently produced J/ψ's in violent hadronic collisions may provide a novel probe of the quark-gluon plasma
Recommended from our members
Longitudinal double-spin asymmetry for inclusive jet and dijet production in pp collisions at s =510 GeV
We report the first measurement of the inclusive jet and the dijet longitudinal double-spin asymmetries, ALL, at midrapidity in polarized pp collisions at a center-of-mass energy s=510 GeV. The inclusive jet ALL measurement is sensitive to the gluon helicity distribution down to a gluon momentum fraction of x≈0.015, while the dijet measurements, separated into four jet-pair topologies, provide constraints on the x dependence of the gluon polarization. Both results are consistent with previous measurements made at s=200 GeV in the overlapping kinematic region, x>0.05, and show good agreement with predictions from recent next-to-leading order global analyses
Upper atmospheres and ionospheres of planets and satellites
The upper atmospheres of the planets and their satellites are more directly
exposed to sunlight and solar wind particles than the surface or the deeper
atmospheric layers. At the altitudes where the associated energy is deposited,
the atmospheres may become ionized and are referred to as ionospheres. The
details of the photon and particle interactions with the upper atmosphere
depend strongly on whether the object has anintrinsic magnetic field that may
channel the precipitating particles into the atmosphere or drive the
atmospheric gas out to space. Important implications of these interactions
include atmospheric loss over diverse timescales, photochemistry and the
formation of aerosols, which affect the evolution, composition and remote
sensing of the planets (satellites). The upper atmosphere connects the planet
(satellite) bulk composition to the near-planet (-satellite) environment.
Understanding the relevant physics and chemistry provides insight to the past
and future conditions of these objects, which is critical for understanding
their evolution. This chapter introduces the basic concepts of upper
atmospheres and ionospheres in our solar system, and discusses aspects of their
neutral and ion composition, wind dynamics and energy budget. This knowledge is
key to putting in context the observations of upper atmospheres and haze on
exoplanets, and to devise a theory that explains exoplanet demographics.Comment: Invited Revie
- …