6,320 research outputs found
Deep Adaptive Attention for Joint Facial Action Unit Detection and Face Alignment
Facial action unit (AU) detection and face alignment are two highly
correlated tasks since facial landmarks can provide precise AU locations to
facilitate the extraction of meaningful local features for AU detection. Most
existing AU detection works often treat face alignment as a preprocessing and
handle the two tasks independently. In this paper, we propose a novel
end-to-end deep learning framework for joint AU detection and face alignment,
which has not been explored before. In particular, multi-scale shared features
are learned firstly, and high-level features of face alignment are fed into AU
detection. Moreover, to extract precise local features, we propose an adaptive
attention learning module to refine the attention map of each AU adaptively.
Finally, the assembled local features are integrated with face alignment
features and global features for AU detection. Experiments on BP4D and DISFA
benchmarks demonstrate that our framework significantly outperforms the
state-of-the-art methods for AU detection.Comment: This paper has been accepted by ECCV 201
MOON: A Mixed Objective Optimization Network for the Recognition of Facial Attributes
Attribute recognition, particularly facial, extracts many labels for each
image. While some multi-task vision problems can be decomposed into separate
tasks and stages, e.g., training independent models for each task, for a
growing set of problems joint optimization across all tasks has been shown to
improve performance. We show that for deep convolutional neural network (DCNN)
facial attribute extraction, multi-task optimization is better. Unfortunately,
it can be difficult to apply joint optimization to DCNNs when training data is
imbalanced, and re-balancing multi-label data directly is structurally
infeasible, since adding/removing data to balance one label will change the
sampling of the other labels. This paper addresses the multi-label imbalance
problem by introducing a novel mixed objective optimization network (MOON) with
a loss function that mixes multiple task objectives with domain adaptive
re-weighting of propagated loss. Experiments demonstrate that not only does
MOON advance the state of the art in facial attribute recognition, but it also
outperforms independently trained DCNNs using the same data. When using facial
attributes for the LFW face recognition task, we show that our balanced (domain
adapted) network outperforms the unbalanced trained network.Comment: Post-print of manuscript accepted to the European Conference on
Computer Vision (ECCV) 2016
http://link.springer.com/chapter/10.1007%2F978-3-319-46454-1_
Conformative Filtering for Implicit Feedback Data
Implicit feedback is the simplest form of user feedback that can be used for
item recommendation. It is easy to collect and is domain independent. However,
there is a lack of negative examples. Previous work tackles this problem by
assuming that users are not interested or not as much interested in the
unconsumed items. Those assumptions are often severely violated since
non-consumption can be due to factors like unawareness or lack of resources.
Therefore, non-consumption by a user does not always mean disinterest or
irrelevance. In this paper, we propose a novel method called Conformative
Filtering (CoF) to address the issue. The motivating observation is that if
there is a large group of users who share the same taste and none of them have
consumed an item before, then it is likely that the item is not of interest to
the group. We perform multidimensional clustering on implicit feedback data
using hierarchical latent tree analysis (HLTA) to identify user `tastes' groups
and make recommendations for a user based on her memberships in the groups and
on the past behavior of the groups. Experiments on two real-world datasets from
different domains show that CoF has superior performance compared to several
common baselines
Image processing methods to elucidate spatial characteristics of retinal microglia after optic nerve transection
published_or_final_versio
Destabilization of the thermohaline circulation by transient perturbations to the hydrological cycle
We reconsider the problem of the stability of the thermohaline circulation as
described by a two-dimensional Boussinesq model with mixed boundary conditions.
We determine how the stability properties of the system depend on the intensity
of the hydrological cycle. We define a two-dimensional parameters' space
descriptive of the hydrology of the system and determine, by considering
suitable quasi-static perturbations, a bounded region where multiple equilibria
of the system are realized. We then focus on how the response of the system to
finite-amplitude surface freshwater forcings depends on their rate of increase.
We show that it is possible to define a robust separation between slow and fast
regimes of forcing. Such separation is obtained by singling out an estimate of
the critical growth rate for the anomalous forcing, which can be related to the
characteristic advective time scale of the system.Comment: 37 pages, 8 figures, submitted to Clim. Dy
Structured Landmark Detection via Topology-Adapting Deep Graph Learning
Image landmark detection aims to automatically identify the locations of
predefined fiducial points. Despite recent success in this field,
higher-ordered structural modeling to capture implicit or explicit
relationships among anatomical landmarks has not been adequately exploited. In
this work, we present a new topology-adapting deep graph learning approach for
accurate anatomical facial and medical (e.g., hand, pelvis) landmark detection.
The proposed method constructs graph signals leveraging both local image
features and global shape features. The adaptive graph topology naturally
explores and lands on task-specific structures which are learned end-to-end
with two Graph Convolutional Networks (GCNs). Extensive experiments are
conducted on three public facial image datasets (WFLW, 300W, and COFW-68) as
well as three real-world X-ray medical datasets (Cephalometric (public), Hand
and Pelvis). Quantitative results comparing with the previous state-of-the-art
approaches across all studied datasets indicating the superior performance in
both robustness and accuracy. Qualitative visualizations of the learned graph
topologies demonstrate a physically plausible connectivity laying behind the
landmarks.Comment: Accepted to ECCV-20. Camera-ready with supplementary materia
Considerations about multistep community detection
The problem and implications of community detection in networks have raised a
huge attention, for its important applications in both natural and social
sciences. A number of algorithms has been developed to solve this problem,
addressing either speed optimization or the quality of the partitions
calculated. In this paper we propose a multi-step procedure bridging the
fastest, but less accurate algorithms (coarse clustering), with the slowest,
most effective ones (refinement). By adopting heuristic ranking of the nodes,
and classifying a fraction of them as `critical', a refinement step can be
restricted to this subset of the network, thus saving computational time.
Preliminary numerical results are discussed, showing improvement of the final
partition.Comment: 12 page
Dendritic Spine Shape Analysis: A Clustering Perspective
Functional properties of neurons are strongly coupled with their morphology.
Changes in neuronal activity alter morphological characteristics of dendritic
spines. First step towards understanding the structure-function relationship is
to group spines into main spine classes reported in the literature. Shape
analysis of dendritic spines can help neuroscientists understand the underlying
relationships. Due to unavailability of reliable automated tools, this analysis
is currently performed manually which is a time-intensive and subjective task.
Several studies on spine shape classification have been reported in the
literature, however, there is an on-going debate on whether distinct spine
shape classes exist or whether spines should be modeled through a continuum of
shape variations. Another challenge is the subjectivity and bias that is
introduced due to the supervised nature of classification approaches. In this
paper, we aim to address these issues by presenting a clustering perspective.
In this context, clustering may serve both confirmation of known patterns and
discovery of new ones. We perform cluster analysis on two-photon microscopic
images of spines using morphological, shape, and appearance based features and
gain insights into the spine shape analysis problem. We use histogram of
oriented gradients (HOG), disjunctive normal shape models (DNSM), morphological
features, and intensity profile based features for cluster analysis. We use
x-means to perform cluster analysis that selects the number of clusters
automatically using the Bayesian information criterion (BIC). For all features,
this analysis produces 4 clusters and we observe the formation of at least one
cluster consisting of spines which are difficult to be assigned to a known
class. This observation supports the argument of intermediate shape types.Comment: Accepted for BioImageComputing workshop at ECCV 201
I-TASSER server for protein 3D structure prediction
<p>Abstract</p> <p>Background</p> <p>Prediction of 3-dimensional protein structures from amino acid sequences represents one of the most important problems in computational structural biology. The community-wide Critical Assessment of Structure Prediction (CASP) experiments have been designed to obtain an objective assessment of the state-of-the-art of the field, where I-TASSER was ranked as the best method in the server section of the recent 7th CASP experiment. Our laboratory has since then received numerous requests about the public availability of the I-TASSER algorithm and the usage of the I-TASSER predictions.</p> <p>Results</p> <p>An on-line version of I-TASSER is developed at the KU Center for Bioinformatics which has generated protein structure predictions for thousands of modeling requests from more than 35 countries. A scoring function (C-score) based on the relative clustering structural density and the consensus significance score of multiple threading templates is introduced to estimate the accuracy of the I-TASSER predictions. A large-scale benchmark test demonstrates a strong correlation between the C-score and the TM-score (a structural similarity measurement with values in [0, 1]) of the first models with a correlation coefficient of 0.91. Using a C-score cutoff > -1.5 for the models of correct topology, both false positive and false negative rates are below 0.1. Combining C-score and protein length, the accuracy of the I-TASSER models can be predicted with an average error of 0.08 for TM-score and 2 Ă… for RMSD.</p> <p>Conclusion</p> <p>The I-TASSER server has been developed to generate automated full-length 3D protein structural predictions where the benchmarked scoring system helps users to obtain quantitative assessments of the I-TASSER models. The output of the I-TASSER server for each query includes up to five full-length models, the confidence score, the estimated TM-score and RMSD, and the standard deviation of the estimations. The I-TASSER server is freely available to the academic community at <url>http://zhang.bioinformatics.ku.edu/I-TASSER</url>.</p
The N-Myc-responsive lncRNA MILIP promotes DNA double-strand break repair through non-homologous end joining
The protooncoprotein N-Myc, which is overexpressed in approximately 25% of neuroblastomas as the consequence of MYCN gene amplification, has long been postulated to regulate DNA double-strand break (DSB) repair in neuroblastoma cells, but experimental evidence of this function is presently scant. Here, we show that N-Myc transcriptionally activates the long noncoding RNA MILIP to promote nonhomologous end-joining (NHEJ) DNA repair through facilitating Ku70–Ku80 heterodimerization in neuroblastoma cells. High MILIP expression was associated with poor outcome and appeared as an independent prognostic factor in neuroblastoma patients. Knockdown of MILIP reduced neuroblastoma cell viability through the induction of apoptosis and inhibition of proliferation, retarded neuroblastoma xenograft growth, and sensitized neuroblastoma cells to DNA-damaging therapeutics. The effect of MILIP knockdown was associated with the accumulation of DNA DSBs in neuroblastoma cells largely due to decreased activity of the NHEJ DNA repair pathway. Mechanistical investigations revealed that binding of MILIP to Ku70 and Ku80 increased their heterodimerization, and this was required for MILIP-mediated promotion of NHEJ DNA repair. Disrupting the interaction between MILIP and Ku70 or Ku80 increased DNA DSBs and reduced cell viability with therapeutic potential revealed where targeting MILIP using Gapmers cooperated with the DNA-damaging drug cisplatin to inhibit neuroblastoma growth in vivo. Collectively, our findings identify MILIP as an N-Myc downstream effector critical for activation of the NHEJ DNA repair pathway in neuroblastoma cells, with practical implications of MILIP targeting, alone and in combination with DNA-damaging therapeutics, for neuroblastoma treatment
- …