29 research outputs found

    Two-electron spin correlations in precision placed donors in silicon

    Get PDF
    Substitutional donor atoms in silicon are promising qubits for quantum computation with extremely long relaxation and dephasing times demonstrated. One of the critical challenges of scaling these systems is determining inter-donor distances to achieve controllable wavefunction overlap while at the same time performing high fidelity spin readout on each qubit. Here we achieve such a device by means of scanning tunnelling microscopy lithography. We measure anti-correlated spin states between two donor-based spin qubits in silicon separated by 16 ± 1 nm. By utilising an asymmetric system with two phosphorus donors at one qubit site and one on the other (2P−1P), we demonstrate that the exchange interaction can be turned on and off via electrical control of two in-plane phosphorus doped detuning gates. We determine the tunnel coupling between the 2P−1P system to be 200 MHz and provide a roadmap for the observation of two-electron coherent exchange oscillations

    Rejecting knowledge claims inside and outside science

    No full text
    Citizens, policy-makers and scientists all face the problem of assessing maverick scientific claims. Via a case study, I show the different resources available to experts and non-experts when they make these judgements and reflect upon what this means for technological decision-making in the public domain

    Experimental statistical signature of many-body quantum interference

    No full text
    Multi-particle interference is an essential ingredient for fundamental quantum mechanics phenomena and for quantum information processing to provide a computational advantage, as recently emphasized by boson sampling experiments. Hence, developing a reliable and efficient technique to witness its presence is pivotal in achieving the practical implementation of quantum technologies. Here, we experimentally identify genuine many-body quantum interference via a recent efficient protocol, which exploits statistical signatures at the output of a multimode quantum device. We successfully apply the test to validate three-photon experiments in an integrated photonic circuit, providing an extensive analysis on the resources required to perform it. Moreover, drawing upon established techniques of machine learning, we show how such tools help to identify the-a priori unknown-optimal features to witness these signatures. Our results provide evidence on the efficacy and feasibility of the method, paving the way for its adoption in large-scale implementations

    Open Genetic Code: On open source in the life sciences

    Get PDF
    The introduction of open source in the life sciences is increasingly being suggested as an alternative to patenting. This is an alternative, however, that takes its shape at the intersection of the life sciences and informatics. Numerous examples can be identified wherein open source in the life sciences refers to access, sharing and collaboration as informatic practices. This includes open source as an experimental model and as a more sophisticated approach of genetic engineering. The first section discusses the greater flexibly in regard of patenting and the relationship to the introduction of open source in the life sciences. The main argument is that the ownership of knowledge in the life sciences should be reconsidered in the context of the centrality of DNA in informatic formats. This is illustrated by discussing a range of examples of open source models. The second part focuses on open source in synthetic biology as exemplary for the re-materialization of information into food, energy, medicine and so forth. The paper ends by raising the question whether another kind of alternative might be possible: one that looks at open source as a model for an alternative to the commodification of life that is understood as an attempt to comprehensively remove the restrictions from the usage of DNA in any of its formats.BiotechnologyApplied Science

    Aphid-Proof Plants: Biotechnology-Based Approaches for Aphid Control

    No full text

    Thymic development of unconventional T cells: how NKT cells, MAIT cells and γδ T cells emerge

    No full text
    T cell lineages are defined by specialized functions and differential expression of surface antigens, cytokines and transcription factors. Conventional CD4+ and CD8+ T cells are the best studied of the T cell subsets, but ‘unconventional’ T cells have emerged as being more abundant and influential than has previously been appreciated. Key subsets of unconventional T cells include natural killer T (NKT) cells, mucosal-associated invariant T (MAIT) cells and γδ T cells; collectively, these make up ~10% of circulating T cells, and often they are the majority of T cells in tissues such as the liver and gut mucosa. Defects and deficiencies in unconventional T cells are associated with autoimmunity, chronic inflammation and cancer, so it is important to understand how their development is regulated. In this Review, we describe the thymic development of NKT cells, MAIT cells and γδ T cells and highlight some of the key differences between conventional and unconventional T cell development. © 2020, Springer Nature Limited
    corecore