977 research outputs found
On the spectrum of the Laplace operator of metric graphs attached at a vertex -- Spectral determinant approach
We consider a metric graph made of two graphs
and attached at one point. We derive a formula relating the
spectral determinant of the Laplace operator
in terms of the spectral
determinants of the two subgraphs. The result is generalized to describe the
attachment of graphs. The formulae are also valid for the spectral
determinant of the Schr\"odinger operator .Comment: LaTeX, 8 pages, 7 eps figures, v2: new appendix, v3: discussions and
ref adde
Spectral determinants and zeta functions of Schr\"odinger operators on metric graphs
A derivation of the spectral determinant of the Schr\"odinger operator on a
metric graph is presented where the local matching conditions at the vertices
are of the general form classified according to the scheme of Kostrykin and
Schrader. To formulate the spectral determinant we first derive the spectral
zeta function of the Schr\"odinger operator using an appropriate secular
equation. The result obtained for the spectral determinant is along the lines
of the recent conjecture.Comment: 16 pages, 2 figure
Ordered spectral statistics in 1D disordered supersymmetric quantum mechanics and Sinai diffusion with dilute absorbers
Some results on the ordered statistics of eigenvalues for one-dimensional
random Schr\"odinger Hamiltonians are reviewed. In the case of supersymmetric
quantum mechanics with disorder, the existence of low energy delocalized states
induces eigenvalue correlations and makes the ordered statistics problem
nontrivial. The resulting distributions are used to analyze the problem of
classical diffusion in a random force field (Sinai problem) in the presence of
weakly concentrated absorbers. It is shown that the slowly decaying averaged
return probability of the Sinai problem, \mean{P(x,t|x,0)}\sim \ln^{-2}t, is
converted into a power law decay, \mean{P(x,t|x,0)}\sim t^{-\sqrt{2\rho/g}},
where is the strength of the random force field and the density of
absorbers.Comment: 10 pages ; LaTeX ; 4 pdf figures ; Proceedings of the meeting
"Fundations and Applications of non-equilibrium statistical mechanics",
Nordita, Stockholm, october 2011 ; v2: appendix added ; v3: figure 2.left
adde
Derivation of the Zakharov equations
This paper continues the study of the validity of the Zakharov model
describing Langmuir turbulence. We give an existence theorem for a class of
singular quasilinear equations. This theorem is valid for well-prepared initial
data. We apply this result to the Euler-Maxwell equations describing
laser-plasma interactions, to obtain, in a high-frequency limit, an asymptotic
estimate that describes solutions of the Euler-Maxwell equations in terms of
WKB approximate solutions which leading terms are solutions of the Zakharov
equations. Because of transparency properties of the Euler-Maxwell equations,
this study is led in a supercritical (highly nonlinear) regime. In such a
regime, resonances between plasma waves, electromagnetric waves and acoustic
waves could create instabilities in small time. The key of this work is the
control of these resonances. The proof involves the techniques of geometric
optics of Joly, M\'etivier and Rauch, recent results of Lannes on norms of
pseudodifferential operators, and a semiclassical, paradifferential calculus
Thermal noise and dephasing due to electron interactions in non-trivial geometries
We study Johnson-Nyquist noise in macroscopically inhomogeneous disordered
metals and give a microscopic derivation of the correlation function of the
scalar electric potentials in real space. Starting from the interacting
Hamiltonian for electrons in a metal and the random phase approximation, we
find a relation between the correlation function of the electric potentials and
the density fluctuations which is valid for arbitrary geometry and
dimensionality. We show that the potential fluctuations are proportional to the
solution of the diffusion equation, taken at zero frequency. As an example, we
consider networks of quasi-1D disordered wires and give an explicit expression
for the correlation function in a ring attached via arms to absorbing leads. We
use this result in order to develop a theory of dephasing by electronic noise
in multiply-connected systems.Comment: 9 pages, 6 figures (version submitted to PRB
Reshaping and Capturing Leidenfrost drops with a magnet
Liquid oxygen, which is paramagnetic, also undergoes Leidenfrost effect at
room temperature. In this article, we first study the deformation of oxygen
drops in a magnetic field and show that it can be described via an effective
capillary length, which includes the magnetic force. In a second part, we
describe how these ultra-mobile drops passing above a magnet significantly slow
down and can even be trapped. The critical velocity below which a drop is
captured is determined from the deformation induced by the field.Comment: Published in Physics of Fluids (vol. 25, 032108, 2013)
http://pof.aip.org/resource/1/phfle6/v25/i3/p032108_s1?isAuthorized=n
Lyapunov exponents, one-dimensional Anderson localisation and products of random matrices
The concept of Lyapunov exponent has long occupied a central place in the
theory of Anderson localisation; its interest in this particular context is
that it provides a reasonable measure of the localisation length. The Lyapunov
exponent also features prominently in the theory of products of random matrices
pioneered by Furstenberg. After a brief historical survey, we describe some
recent work that exploits the close connections between these topics. We review
the known solvable cases of disordered quantum mechanics involving random point
scatterers and discuss a new solvable case. Finally, we point out some
limitations of the Lyapunov exponent as a means of studying localisation
properties.Comment: LaTeX, 23 pages, 3 pdf figures ; review for a special issue on
"Lyapunov analysis" ; v2 : typo corrected in eq.(3) & minor change
Conditional stability of unstable viscous shock waves in compressible gas dynamics and MHD
Extending our previous work in the strictly parabolic case, we show that a
linearly unstable Lax-type viscous shock solution of a general quasilinear
hyperbolic--parabolic system of conservation laws possesses a
translation-invariant center stable manifold within which it is nonlinearly
orbitally stable with respect to small perturbations, converging
time-asymptotically to a translate of the unperturbed wave. That is, for a
shock with unstable eigenvalues, we establish conditional stability on a
codimension- manifold of initial data, with sharp rates of decay in all
. For , we recover the result of unconditional stability obtained by
Mascia and Zumbrun. The main new difficulty in the hyperbolic--parabolic case
is to construct an invariant manifold in the absence of parabolic smoothing.Comment: 32p
Scattering theory on graphs (2): the Friedel sum rule
We consider the Friedel sum rule in the context of the scattering theory for
the Schr\"odinger operator -\Dc_x^2+V(x) on graphs made of one-dimensional
wires connected to external leads. We generalize the Smith formula for graphs.
We give several examples of graphs where the state counting method given by the
Friedel sum rule is not working. The reason for the failure of the Friedel sum
rule to count the states is the existence of states localized in the graph and
not coupled to the leads, which occurs if the spectrum is degenerate and the
number of leads too small.Comment: 20 pages, LaTeX, 6 eps figure
Functionals of the Brownian motion, localization and metric graphs
We review several results related to the problem of a quantum particle in a
random environment.
In an introductory part, we recall how several functionals of the Brownian
motion arise in the study of electronic transport in weakly disordered metals
(weak localization).
Two aspects of the physics of the one-dimensional strong localization are
reviewed : some properties of the scattering by a random potential (time delay
distribution) and a study of the spectrum of a random potential on a bounded
domain (the extreme value statistics of the eigenvalues).
Then we mention several results concerning the diffusion on graphs, and more
generally the spectral properties of the Schr\"odinger operator on graphs. The
interest of spectral determinants as generating functions characterizing the
diffusion on graphs is illustrated.
Finally, we consider a two-dimensional model of a charged particle coupled to
the random magnetic field due to magnetic vortices. We recall the connection
between spectral properties of this model and winding functionals of the planar
Brownian motion.Comment: Review article. 50 pages, 21 eps figures. Version 2: section 5.5 and
conclusion added. Several references adde
- …