41 research outputs found
Primary aldosteronism: Pathophysiological mechanisms of cell death and proliferation
Primary aldosteronism is the most common surgically curable form of hypertension. The sporadic forms of the disorder are usually caused by aldosterone overproduction from a unilateral adrenocortical aldosterone-producing adenoma or from bilateral adrenocortical hyperplasia. The main knowledge-advances in disease pathophysiology focus on pathogenic germline and somatic variants that drive the excess aldosterone production. Less clear are the molecular and cellular mechanisms that lead to an increased mass of the adrenal cortex. However, the combined application of transcriptomics, metabolomics, and epigenetics has achieved substantial insight into these processes and uncovered the evolving complexity of disrupted cell growth mechanisms in primary aldosteronism. In this review, we summarize and discuss recent progress in our understanding of mechanisms of cell death, and proliferation in the pathophysiology of primary aldosteronism
Role of cryptochrome-1 and cryptochrome-2 in aldosterone-producing adenomas and adrenocortical cells
Mice lacking the core-clock components, cryptochrome-1 (CRY1) and cryptochrome-2 (CRY2) display a phenotype of hyperaldosteronism, due to the upregulation of type VI 3β-hydroxyl-steroid dehydrogenase (Hsd3b6), the murine counterpart to the human type I 3β-hydroxyl-steroid dehydrogenase (HSD3B1) gene. In the present study, we evaluated the role of CRY1 and CRY2 genes, and their potential interplay with HSD3B isoforms in adrenal pathophysiology in man. Forty-six sporadic aldosterone-producing adenomas (APAs) and 20 paired adrenal samples were included, with the human adrenocortical cells HAC15 used as the in vitro model. In our cohort of sporadic APAs, CRY1 expression was 1.7-fold [0.75–2.26] higher (p = 0.016), while CRY2 showed a 20% lower expression [0.80, 0.52–1.08] (p = 0.04) in APAs when compared with the corresponding adjacent adrenal cortex. Type II 3β-hydroxyl-steroid dehydrogenase (HSD3B2) was 317-fold [200–573] more expressed than HSD3B1, and is the main HSD3B isoform in APAs. Both dehydrogenases were more expressed in APAs when compared with the adjacent cortex (5.7-fold and 3.5-fold, respectively, p < 0.001 and p = 0.001) and HSD3B1 was significantly more expressed in APAs composed mainly of zona glomerulosa-like cells. Treatment with angiotensin II (AngII) resulted in a significant upregulation of CRY1 (1.7 ± 0.25-fold, p < 0.001) at 6 h, and downregulation of CRY2 at 12 h (0.6 ± 0.1-fold, p < 0.001), through activation of the AngII type 1 receptor. Independent silencing of CRY1 and CRY2 genes in HAC15 cells resulted in a mild upregulation of HSD3B2 without affecting HSD3B1 expression. In conclusion, our results support the hypothesis that CRY1 and CRY2, being AngII-regulated genes, and showing a differential expression in APAs when compared with the adjacent adrenal cortex, might be involved in adrenal cell function, and in the regulation of aldosterone production
Liddle syndrome: Review of the literature and description of a new case
Liddle syndrome is an inherited form of low-renin hypertension, transmitted with an autosomal dominant pattern. The molecular basis of Liddle syndrome resides in germline mutations of the SCNN1A, SCNN1B and SCNN1G genes, encoding the α, β, and γ-subunits of the epithelial Na+ channel (ENaC), respectively. To date, 31 different causative mutations have been reported in 72 families from four continents. The majority of the substitutions cause an increased expression of the channel at the distal nephron apical membrane, with subsequent enhanced renal sodium reabsorption. The most common clinical presentation of the disease is early onset hypertension, hypokalemia, metabolic alkalosis, suppressed plasma renin activity and low plasma aldosterone. Consequently, treatment of Liddle syndrome is based on the administration of ENaC blockers, amiloride and triamterene. Herein, we discuss the genetic basis, clinical presentation, diagnosis and treatment of Liddle syndrome. Finally, we report a new case in an Italian family, caused by a SCNN1B p.Pro618Leu substitution