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ABSTRACT  1 

Primary aldosteronism (PA) is associated with an increased risk of cardiovascular events compared 2 

to essential hypertension (EH). Endothelial dysfunction is described as a marker of aldosterone-3 

dependent cardiovascular injury in patients with PA, as well as in EH. Circulating extracellular 4 

vesicles (EVs), reflecting endothelial cell activity, could represent one of the mediators of endothelial 5 

dysfunction in these patients. The aim of this study was to characterize for the first time circulating 6 

EVs from patients diagnosed with PA compared to controls with EH.  7 

Serum EVs were isolated from 12 patients with PA and 12 with EH, matched by sex, age and blood 8 

pressure. At nanoparticle tracking analysis, EVs concentration was 2.2 times higher in PA patients 9 

(P=0.011) compared with EH and a significant correlation between EV number and serum 10 

aldosterone levels was identified; fluorescence-activated cell sorting analysis demonstrated that 11 

42.1% of isolated EVs originated from leukocytes, 21.6% from endothelial cells, and 14.7% from 12 

platelets and that PA patients had a higher number of endothelial EVs compared to EH (P=0.005). 13 

Through EV mRNA profiling, 15 up-regulated and 4 down-regulated genes in PA patients compared 14 

to EH were identified; moreover, EDN1 was expressed only in patients with PA. Micro-array platform 15 

was validated by qRT-PCR on 4 genes (CASP1, EDN1, F2R, HMOX1) involved in apoptosis, 16 

inflammation and endothelial dysfunction. qRT-PCR confirmed the up-regulation of CASP1 and 17 

EDN1 (fold-change 12.0/18.3; P=0.023 and P=0.035, respectively).  18 

According to our results, circulating EVs may represent a marker of endothelial injury, involved in 19 

progression of organ damage in PA patients.  20 

 21 

Keywords: extracellular vesicles, primary aldosteronism, endothelial dysfunction, endothelin-1, 22 

caspase-1.  23 
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ABBREVIATION LIST  1 

NO, Nitric Oxide; ET-1 Endothelin-1; MR, Mineralocorticoid Receptor; PA, Primary Aldosteronism; 2 

BP, Blood Pressure; EVs, Extracellular Vesicles; EXOs, Exosomes; EH, Essential Hypertension; 3 

APA, Aldosterone Producing Adenoma; NTA, Nanoparticle Tracking Analysis; FACS analysis, 4 

Fluorescence-Activated Cell Sorting analysis;  5 

 6 

INTRODUCTION 7 

Endothelium is the inner layer of blood vessels and plays a key role in the regulation of peripheral 8 

arterial tone and vascular homeostasis1. Endothelial dysfunction results from the imbalance between 9 

vasodilators, such as nitric oxide (NO), and vasoconstrictors, such as angiotensin II and endothelin-10 

1 (ET-1)2. In addition to impaired vasoreactivity, endothelial failure determines a pro-inflammatory 11 

and pro-coagulatory state, favouring initiation and progression of atherosclerosis3; consistently, 12 

several studies demonstrated the association between endothelial dysfunction and cardiovascular 13 

events4. 14 

It is well known that an inappropriate aldosterone production for sodium status can induce not only 15 

arterial hypertension, but also detrimental effects on endothelium and vascular remodelling5. In fact, 16 

it has been reported that aldosterone treatment inhibits NO release in rat vascular smooth muscle 17 

cells6 and that aldosterone infusion promotes, in murine models, the impairment of endothelium-18 

dependent vasodilatation and the development of severe arterial hypertension and inflammatory 19 

response, with perivascular leukocyte infiltrate and fibrinoid necrosis of the tunica media7,8. The 20 

acute administration of aldosterone inhibits acetylcholine-induced endothelium-dependent 21 

vasodilatation in healthy volunteers9, whereas in patients with chronic heart failure (and hence 22 

secondary hyperaldosteronism), spironolactone administration improves endothelial function by 23 

increasing NO bioavailability10. Furthermore, patients with primary aldosteronism (PA) displayed 24 

aldosterone-related vascular inflammation and oxidative stress with endothelial dysfunction and 25 
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vascular damage11,12, which translated into increased arterial stiffness and loss of vascular 1 

reactivity11,13. The administration of a MR antagonist significantly improved endothelial function 2 

both in patients with PA and in control patients with resistant hypertension, independently from blood 3 

pressure (BP) decrease11.  4 

Extracellular vesicles (EVs) are bilayer membrane structures classified according to size and 5 

biogenesis in microvesicles and exosomes (EXOs); EXOs are the smaller and best characterized EVs, 6 

with a diameter ranging from 30 to 150 nm14. EVs are constitutively released by cells and they are 7 

involved in mechanisms of autocrine, paracrine and endocrine signaling through the transfer of 8 

proteins, lipids, and nucleic acids. The ability to transfer genetic information, thus influencing the 9 

behavior of target cells, makes EVs key players in inter-cellular communication14,15. EVs reflect the 10 

activation state of parent cell and may represent a valuable resource for the assessment of 11 

cardiovascular disease16; considering EVs as surrogate markers of endothelial cell 12 

function/dysfunction, we hypothesized that they could be one of the key mediators of endothelial 13 

dysfunction and aldosterone-mediated cardiovascular injury.  14 

PA is a frequent cause of endocrine hypertension with a prevalence of 5-10% among the hypertensive 15 

population17,18. Patients affected by PA display an increased prevalence of target organ damage and 16 

cardiovascular events compared to patients with EH19. Endothelial dysfunction may justify at least in 17 

part the increased cardiovascular risk in these patients; therefore, the aims of the present study were 18 

to characterize serum-derived EVs in patients with PA compared to controls with EH and to analyse 19 

their mRNA cargo in order to explore a potential role for EVs in aldosterone-mediated endothelial 20 

damage. 21 

 22 

METHODS 23 

A detailed description of patient selection, EV isolation and characterization protocols and gene 24 

expression analysis are provided in the online supplement. 25 
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Patient Selection 1 

We recruited 12 patients with PA due to an aldosterone producing adenoma (APA) and 12 patients 2 

affected by EH matched by gender, age and BP values, diagnosed at the Division of Internal Medicine 3 

and Hypertension Unit, University of Torino. Each patient underwent medical examination and 4 

routine laboratory tests. Diagnosis of PA was made according to the Endocrine Society guideline17. 5 

The study was approved by the local ethical committee and fully informed written consent was 6 

obtained from each patient. 7 

EVs isolation and characterization 8 

EVs were isolated from aliquot of serum using a charge-based precipitation method, as previously 9 

described20. To further purify EVs samples, we performed a second isolation step through 10 

ultracentrifugation at 100,000 g21. Isolated EVs were then carefully characterized by Nanoparticle 11 

Tracking Analysis (NTA), Fluorescence-Activated Cell Sorting (FACS) analysis and Western Blot. 12 

FACS analysis and NTA described EVs derivation (endothelial cells, platelets or leucocytes) and the 13 

number of EVs per mL with their relative size distribution, respectively. A Western Blot on protein 14 

lysate was performed in order to confirm the presence of EVs markers on analyzed samples (CD63, 15 

TSG101 and Flotillin-1). 16 

Gene expression analysis 17 

RNA extraction from purified EVs and total RNA retro-transcription were performed through 18 

commercially available kits (mirVana Isolation Kit, Thermo Fisher Scientific, Waltham, 19 

Massachusetts, USA; RT2 First Strand kit, Qiagen, Hilden, Germany), according to manufacturer’s 20 

instructions. mRNA qRT-PCR array profiling was performed on 4 patients diagnosed with PA and 4 21 

with EH, using a platform focused on the evaluation of 96 human genes involved in endothelial 22 

function regulation (Endothelial Cell Biology RT2 Profiler PCR Array Format E384, Qiagen, Hilden, 23 

Germany). The results were subsequently validated with qRT-PCR on 10 patients with PA and 10 24 

with EH (2 patients from each group were included also in qRT-PCR array analysis) for CASP1 25 
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(Caspase 1, Apoptosis-related Cysteine Peptidase), EDN1 (Endothelin 1), F2R (Coagulation factor II 1 

[thrombin] receptor) and HMOX1 (Heme Oxygenase [decycling] 1), selected considering their 2 

expression profile and available functional data in literature. Data were analyzed through a dedicated 3 

software, with the 2-ΔΔCT relative quantification (RQ) method, using 18SrRNA (18S ribosomal RNA) 4 

as endogenous control. The RQ mean gene expression of PA patients was compared to EH and 5 

expressed as fold-change (FC). A gene was considered down-regulated for FC values between 0 and 6 

1 or up-regulated for values greater than 1. 7 

Statistical Analysis 8 

IBM SPSS Statistics 22 (IBM Corp., Armonk, New York, USA) was used for statistical analyses. Data 9 

were analyzed with the Kolmogorov–Smirnov test to determine their distributions. Normally 10 

distributed variables (age, potassium, systolic and diastolic BP) are expressed as mean ± standard 11 

deviation; non-normally distributed variables (PRA, aldosterone, EVs-diameter and concentration, 12 

FACs analysis data and RQ) are expressed as median [interquartile range]. ANOVA one-way and 13 

Mann-Whitney’s tests were used to compare variables with a normal or non-normal distribution, 14 

respectively. Correlations were evaluated by Pearson test (R coefficient) and regression curve 15 

analysis. P-values of less than 0.05 were considered significant. 16 

 17 

RESULTS 18 

EVs characterization 19 

A total of 12 patients with PA and a subtype diagnosis of APA and 12 controls with EH, carefully 20 

matched by gender, age and BP values were included in the study; patient characteristics with 21 

hormonal parameters are described in Table 1. Each cohort was composed of 8 males and 4 females, 22 

with a mean age of 51 ± 8 years for PA patients and 50 ± 7 for EH patients (P = 0.809). As expected, 23 

BP values were similar (152/94 and 150/93 mmHg, respectively for patients with PA and EH; P > 24 

0.05), whereas patients with PA had lower potassium and PRA levels and higher aldosterone levels 25 
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(P < 0.001 for all comparison) compared with patients with EH. For each patient, serum-derived EVs 1 

were systematically characterized through NTA, FACS analysis and Western Blot for EV-markers 2 

(Figure 1).  3 

At NTA, patients with PA and EH showed a similar EV-diameter (respectively 250 nm [176; 262] 4 

and 233 nm [203; 265]; P = 0.874; Figure 1A), whereas the number of EVs per mL was significantly 5 

higher for patients with PA compared with patients with EH (7.8E+11 [6.2E+11; 3.0E+12] versus 6 

3.6E+11 [1.7E+11; 1.3E+12]; P = 0.011; Figure 1B).  7 

To define the origin of isolated EVs, we performed FACS analysis for three different surface markers: 8 

CD31 for endothelial cells, CD42b for platelets, and CD45 for leucocytes. In cytofluorimetric 9 

analysis each EV passes through the flow cytometer and is detected as a distinct event; we expressed 10 

EVs concentration as the number of events detected in 60 seconds. Most EVs resulted positive for 11 

CD45 (42.1%), whereas 21.6% and 14.7% were positive for CD31 and CD42b, respectively, without 12 

significant differences in percentage distribution between the two group of patients. Patients with PA 13 

presented a higher absolute number of endothelial-derived EVs (1545 [1161; 2151] versus 645 [508; 14 

1174] events per 60 seconds; P = 0.005), whereas we did not find differences for CD42b and CD45 15 

between patients with PA and EH (808 [564; 979] versus 415 [313; 778] events per 60 seconds – P= 16 

0.052 and 3091 [1970; 4531] versus 1460 [1108; 2542] events per 60 sec – P = 0.075, respectively). 17 

Consistent with NTA findings, the total absolute number of events per 60 seconds was significant 18 

higher in patients with PA compared with patients with EH (7642 [6375; 10391] vs 3450 [2464; 19 

4931]; P = 0.001; Figure 1C).  20 

The EV concentration was 2.2 times higher in patients with PA versus controls with both FACS 21 

analysis and NTA; furthermore, the number of EVs per mL directly correlated with aldosterone 22 

concentration (R = 0.472; P= 0.020). Conversely, we did not find a significant correlation with 23 

systolic (R = 0.347; P= 0.097) or diastolic BP (R = 0.308; P = 0.144, independently from the diagnosis 24 

(supplemental figure S1).  25 
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In order to confirm the presence of EVs in our samples, we also performed a Western Blot analysis 1 

that demonstrated the expression of EV markers CD63, TSG101 and Flotillin-1 (Figure 1D). 2 

 3 

Gene expression analysis 4 

To investigate a potential role for EVs in aldosterone-mediated endothelial damage in patients 5 

diagnosed with PA, we performed a qRT-PCR-array evaluating the expression level of a panel of 96 6 

human genes involved in angiogenesis, vasoconstriction / vasodilatation, inflammatory response, 7 

apoptosis, cell adhesion, coagulation and platelet activation; we compared 4 patients with PA with 4 8 

patients affected by EH. Considering both PA and EH cohorts, 63 genes were expressed in serum-9 

derived EVs of at least one patient (Supplementary Table S1). Among the 19 transcripts found in EVs 10 

of at least 4 of the 8 patients included in the analysis, 4 genes were down-regulated (CCL5 11 

[Chemokine (C-C motif) ligand 5], F3 [Coagulation factor III (thromboplastin)], ITGB1 [Integrin, 12 

beta 1], PDGFRA [PLT-derived GF receptor, alpha polypeptide]) and 15 were up-regulated (ANGPT1 13 

[Angiopoietin 1], BAX [BCL2-associated X protein], BCL2 [B-cell CLL/lymphoma 2], CALCA 14 

[Calcitonin-related polypeptide alpha], CASP1 [Caspase 1, apoptosis-related cysteine peptidase], 15 

COL18A1 [Collagen, type XVIII, alpha 1], ENG [Endoglin], F2R [Coagulation factor II (thrombin) 16 

receptor], HMOX1 [Heme oxygenase (decycling) 1], IL6 [Interleukin 6], ITGA5 [Integrin, alpha 5], 17 

PF4 [Platelet factor 4], PGF [Placental growth factor], PTGIS [Prostaglandin I2 synthase], VEGFA 18 

[Vascular endothelial growth factor A]); noteworthy, EDN1 [Endothelin 1] was expressed in only 3 19 

patients with a diagnosis of PA. The hierarchical clustering analysis is reported in Figure 2. After an 20 

initial unbiased transcriptional screening, we validated our results through a target gene approach; we 21 

performed qRT-PCR on 4 selected genes (CASP1, EDN1, F2R, HMOX1) in 10 patients with 22 

diagnosis of PA and 10 controls with EH. We selected the above-mentioned genes considering the 23 

expression profile in EVs and current available knowledge on their functional role. 24 
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After normalization for 18SrRNA expression and correction for the number of EVs per mL, we 1 

calculated the fold-change (FC) as the ratio between the RQ (Relative quantification coefficient) of 2 

PA and EH patients (Figure 3). CASP1 and EDN1 were up-regulated in patients with PA compared 3 

with patients with EH (FC = 12.0, P = 0.023 and FC = 18.3, P = 0.035, respectively), whereas we did 4 

not find significant differences for F2R and HMOX (FC = 9.1, P = 0.143 and FC = 2.4, P = 0.315, 5 

respectively). 6 

 7 

DISCUSSION 8 

In this study, we systematically characterized, for the first time, serum-derived EVs and analyzed 9 

their gene expression profile in patients affected by PA compared to controls with EH. The total 10 

number of EVs per mL, mainly derived from leucocytes and endothelial cells, was significantly 11 

higher in patients with PA and directly correlated with the aldosterone concentration; in addition, 12 

analyzing their mRNA cargo, we demonstrated the up-regulation of CASP1 and EDN1 in EVs derived 13 

from PA patients compared to those derived from patients with EH.  14 

In peripheral blood of healthy subjects, EVs mainly derive from platelets22; consistently with our 15 

results, the percentage of endothelial and inflammatory cell-derived EVs raises in pathological 16 

conditions such as atherosclerosis23. An increased number of circulating EVs has been reported in 17 

patients with acute coronary syndrome24, chronic renal failure25, diabetes26, and pre-eclampsia27. The 18 

concentration of endothelial- and platelet-derived EVs has been observed to be higher also in 19 

hypertensive patients compared to normotensive controls and the number of EVs per mL was 20 

proportional to systolic and diastolic BP28.  21 

In the present study, where patients with PA and EH were matched for blood pressure levels, patients 22 

with PA displayed a higher serum-derived EVs number compared with patients affected by EH; this 23 

observation could be due to a direct effect of the increased aldosterone levels on EVs number, or, 24 

alternatively, this could be the consequence of a more severe PA-associated endothelial damage. 25 



10 

 

Consequently, EVs could be considered as markers of endothelial dysfunction, or as mediators of 1 

vascular damage in patients with PA. In agreement with this hypothesis, the number of EVs per mL 2 

was directly related to aldosterone concentration.  3 

To further investigate the potential role of EVs in aldosterone-mediated endothelial damage, we 4 

performed a mRNA profiling analysis focused on genes involved in the regulation of endothelial 5 

function. Among genes differentially expressed in PA compared to EH patients, we confirmed by 6 

qRT-PCR in a larger cohort of patients, the up-regulation of CASP1 and EDN1 in EVs from patients 7 

with PA compared with patients with EH. 8 

CASP1 encodes for caspase-1, a cysteine-aspartic acid protease, which plays a central role in the 9 

execution-phase of apoptosis. Recently, some studies demonstrated the involvement of caspase-1 in 10 

aldosterone-induced vascular endothelial damage29 and renal tubulointerstitial fibrosis30,31, through 11 

in vitro and in vivo studies. Aldosterone infusion resulted in an increased expression of caspase-1 and 12 

two inflammasome components, ASC (Apoptosis-associated Speck-like protein Caspase-recruitment 13 

domain) and NLRP-3 (Nucleotide-binding domain, Leucine-Rich-containing family, Pyrin domain-14 

containing-3), whereas the mineralocorticoid receptor antagonist eplerenone reverted this effect30. 15 

The inflammasome complex activates caspase-1, which converts the precursors of IL-1β and IL-18 16 

to their active forms, inducing an inflammatory response32. Confirming these results, leukocytes from 17 

a healthy volunteer treated in vitro with aldosterone displayed an increased expression of NLRP-3 18 

and the activation of caspase-1 with increased levels of IL-1β in the supernatant29; moreover, serum 19 

IL-1β levels were significantly higher in patients with PA compared to healthy controls, and 20 

polymorphonuclear cells from the same subjects exhibited the up-regulation of NLRP-3 and an 21 

increased activity of caspase-129. 22 

Chronic inflammation mediated by inflammasome complex and caspase-1 has been described in 23 

atherosclerosis, diabetes, and chronic renal failure33-35 and may be responsible for an increased 24 

cardiovascular risk. Therefore, PA-derived EVs, carrying mRNA encoding for caspase-1, could be 25 
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associated with endothelial dysfunction and contribute to the increased cardiovascular risk observed 1 

in these patients19. 2 

EDN1 encodes a pre-pro-protein, which is processed through proteolysis in endothelial cells to the 3 

potent vasoconstrictor ET-1. ET-1 stimulates aldosterone production in vitro by primary culture of 4 

aldosterone-producing adenoma cells through binding to its receptors, ET-A and ET-B (Endothelin 5 

receptors Type A and B)36. Indeed, ET-1 was reported to be able to enhance angiotensin-II and 6 

ACTH-dependent up-regulation of CYP11B2, stimulating the synthesis of aldosterone37. On the other 7 

side, aldosterone induces the release of ET-1 from murine renal collecting duct cells through the 8 

epigenetic modification of chromatin structure around regulatory elements of EDN1, by MR 9 

activation38. In addition, murine models infused with aldosterone develop functional and structural 10 

vascular remodeling with increased levels of ET-1, systemic oxidative stress, tunica intima 11 

thickening, and deposition of collagen and fibronectin in the extra-cellular matrix8; spironolactone 12 

and an ET-A blocker prevented all these effects, suggesting that the detrimental action of aldosterone 13 

at vascular level is mediated not only by the aldosterone-mediated mineralocorticoid receptor 14 

activation but also by ET-1 and its receptors8. 15 

Nevertheless, the role of ET-1 in PA patients remains unclear; while some authors reported an 16 

increased production of aldosterone in subjects undergoing co-infusion of ACTH and ET-139, others 17 

did not find any difference in circulating levels of ET-1 in patients with PA compared to controls 18 

with EH40. Furthermore, there was no variation in the expression of genes encoding ET-1, ET-A, ET-19 

B, ECE-1 and ECE-2 (Endothelin-Converting Enzyme -1 and -2) in APA compared to normal adrenal 20 

glands41 and endothelial cells treated with aldosterone did not display differences in the expression 21 

of genes involved in renin-angiotensin-aldosterone system modulation, oxidative stress, and 22 

endothelial function42.  23 

Overall, studies attempting to demonstrate in humans a relationship between ET-1 and aldosterone-24 

mediated endothelial damage produced contrasting results. One of the reasons for the difficulty to 25 
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reproduce the aldosterone-mediated detrimental effects in an experimental model could be the lack 1 

of permissive conditions, such as the chronic exposure to elevated aldosterone concentrations and the 2 

simultaneous effects of high blood pressure levels, high sodium and low potassium levels, oxidative 3 

stress, pro-inflammatory, and pro-thrombotic stimuli42. In this perspective serum-derived EVs, being 4 

able to transfer EDN1 mRNA to endothelial cells, could represent one of the mediators of aldosterone-5 

dependent vascular injury. 6 

In conclusion, it is possible to speculate that concentration and content of EVs might reflect the 7 

increased endothelial damage displayed by patients with PA and that EVs can be actively involved 8 

in determining aldosterone-mediated vascular disease by delivering mRNA, cytokines, or other 9 

mediators.  10 

 11 

PERSPECTIVES 12 

Accumulating evidence highlights the contribution of EVs in the development of cardiovascular 13 

disease. For the first time we systematically characterized circulating EVs of patients diagnosed with 14 

PA compared to controls with EH. We found a significant correlation between serum aldosterone 15 

levels and EVs number and consistently a higher concentration of EVs in PA patients. PA-derived 16 

EVs are characterized by an enrichment of CASP1 and EDN1 transcripts, which encode for proteins 17 

involved in the pathogenesis of endothelial dysfunction and vascular damage. Therefore, a potential 18 

role for serum-derived EVs in determining the increased cardiovascular risk in PA can be 19 

hypothesized. Further in vitro and in vivo studies are warranted to investigate the potential functional 20 

and pathophysiological role of CASP1 and EDN1 overexpression and their link between aldosterone 21 

excess and endothelial dysfunction. 22 
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 9 

NOVELTY AND SIGNIFICANCE 10 

What is New?  11 

This is the first study which systematically characterizes PA patients serum-derived EVs compared 12 

to EVs from patients with EH, matched by age, gender and BP values, through the analysis of 13 

diameter, number, surface markers and mRNA expression profiling. 14 

What is Relevant? 15 

Our results demonstrate that PA compared to EH patients have a higher number of circulating EVs, 16 

mainly derived from leucocytes and endothelial cells, and whose concentration directly correlates 17 

with serum aldosterone levels. PA-derived EVs are enriched in CASP1 and EDN1 transcripts, 18 

suggesting their involvement in the development of endothelial dysfunction displayed by these 19 

patients. 20 

Summary 21 

PA affects 5-10% of hypertensive patients and is associated with an increased prevalence of 22 

cardiovascular events; endothelial dysfunction is considered a pre-clinical marker of aldosterone-23 

mediated cardiovascular disease.  24 
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Reflecting endothelial cells functional state, EVs could represent a marker of endothelial injury and 1 

also a mediator of the accelerated target organ damage, observed in patients with PA.  2 
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Table 1 – Patients characteristics 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

Legend to Table 1 – Clinical and biochemical characteristics of patients affected by PA (Primary 9 

Aldosteronism) or EH (Essential Hypertension). Sex (Male/Female) is expressed as absolute number. 10 

Age, Systolic BP (Blood Pressure), Diastolic BP and Potassium are reported as mean ± standard 11 

deviation. Aldosterone and PRA (Plasma Renin Activity) are reported as median [interquartile range].  12 

 13 

Figure 1 – Serum-derived extracellular vesicles (EVs) characterization 14 

Legend to Figure 1 – Characterization of serum-derived EVs from patients with a diagnosis of PA 15 

(Primary Aldosteronism; grey boxes) compared to patients with EH (Essential Hypertension; white 16 

boxes). (A) Diameter of EVs in nm at NTA (Nanoparticle Tracking Analysis); # P-value ≥ 0.05. (B) 17 

Quantification of EVs (EV n° per mL) at NTA; * P = 0.011 (C) FACS analysis for CD31, CD42b 18 

and CD45; the box plot represents the number of events in 60 seconds; # P ≥ 0.05; * P = 0.005; § P 19 

= 0.001. (D) Western Blot Analysis of CD63 (35-55 kDa), TSG101 (45 kDa) and Flotillin-1 (45 kDa); 20 

representative blots are shown for 4 patients with PA and 4 with EH. In panel A, B and C, the 21 

horizontal line indicates the median and box and bar represent the 25th to 75th and the 5th to 95th 22 

percentiles, respectively. 23 

 24 

Figure 2 – mRNA qRT-PCR-array profiling 25 

 PA (n = 12) EH (n = 12) P-value 

Sex (M/F) 8/4 8/4 1.000 

Age (years) 51 ± 8.0 50 ± 7.0 0.809 

Systolic BP (mmHg) 152 ± 13.2 150 ± 10.9 0.529 

Diastolic BP (mmHg) 94 ± 7.4 93 ± 6.9 0.700 

Potassium (mEq/L) 3.6 ± 0.4 4.3 ± 0.3 < 0.001 

Aldosterone (ng/dL) 28.3 [23.5 - 42.9] 9.4 [6.0 - 14.8] < 0.001 

PRA (ng/mL/h) 0.3 [0.1 - 0.6] 1.3 [0.8 - 3.8] < 0.001 
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Legend to Figure 2 – Heat map showing hierarchical cluster analysis of 63 genes expressed in serum-1 

derived EVs from patients with diagnosis of PA (Primary Aldosteronism) compared to patients with 2 

EH (Essential Hypertension). Up-regulated transcripts are reported in green and down-regulated 3 

transcripts in red, with darker shades for intermediate values. In black are represented not expressed 4 

genes. Patients are represented on columns (4 patients with PA on the left and 4 patients with EH on 5 

the right), whereas genes are represented on lines and labeled on the right. The log color scale is 6 

shown on the top. 7 

 8 

Figure 3 – qRT-PCR 9 

Legend to Figure 3 – Validation of gene expression profile by real-time PCR. TaqMan gene 10 

expression assays were used in qRT-PCR, performed in triplicate, to determine fold changes (FC) of 11 

expression levels in PA (Primary Aldosteronism; grey boxes; n = 10) patients compared to EH 12 

(Essential Hypertension; white boxes; n = 10). CASP1, EDN1, F2R and HMOX1 levels were 13 

evaluated using 18SrRNA as endogenous reference gene. RQ (Relative Quantification) are corrected 14 

for the n° of EVs/mL for each sample. # P ≥ 0.05; * P = 0.023; § P = 0.035. The horizontal line 15 

indicates the median and box and bar represent the 25th to 75th and the 5th to 95th percentiles, 16 

respectively.17 
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14. Yáñez-Mó M, Siljander PR, Andreu Z, et al. Biological properties of extracellular vesicles and 

their physiological functions. J Extracell Vesicles. 2015;4:27066. 

15. Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, Ratajczak MZ. Embryonic stem 

cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal 

transfer of mRNA and protein delivery. Leukemia. 2006;20:847-856. 

16. Helbing T, Olivier C, Bode C, Moser M, Diehl P. Role of microparticles in endothelial 

dysfunction and arterial hypertension. World J Cardiol. 2014;6:1135-1139. 

17. Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, Stowasser M, Young 

WF Jr. The Management of Primary Aldosteronism: Case Detection, Diagnosis, and Treatment: 

An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2016;101:1889-

1916. 

18. Monticone S, Burrello J, Tizzani D, Bertello C, Viola A, Buffolo F, Gabetti L, Mengozzi G, 

Williams TA, Rabbia F, Veglio F, Mulatero P. Prevalence and Clinical Manifestations of 

Primary Aldosteronism Encountered in Primary Care Practice. J Am Coll Cardiol. 

2017;69:1811-1820. 

19. Monticone S, D'Ascenzo F, Moretti C, Williams TA, Veglio F, Gaita F, Mulatero P. 

Cardiovascular events and target organ damage in primary aldosteronism compared with 



 

 

19 

essential hypertension: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 

2018;6:41-50. 

20. Deregibus MC, Figliolini F, D'Antico S, Manzini PM, Pasquino C, De Lena M, Tetta C, Brizzi 

MF, Camussi G. Charge-based precipitation of extracellular vesicles. Int J Mol Med. 

2016;38:1359-1366. 

21. Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall J, Nolte-'t Hoen EN, Piper MG, 
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25. Amabile N, Guérin AP, Leroyer A, Mallat Z, Nguyen C, Boddaert J, London GM, Tedgui A, 

Boulanger CM. Circulating endothelial microparticles are associated with vascular dysfunction 

in patients with end-stage renal failure. J Am Soc Nephrol. 2005;16:3381-3381. 

26. Sabatier F, Darmon P, Hugel B, Combes V, Sanmarco M, Velut JG, Arnoux D, Charpiot P, 

Freyssinet JM, Oliver C, Sampol J, Dignat-George F. Type 1 and type 2 diabetic patients 

display different patterns of cellular microparticles. Diabetes. 2002;51:2840-2845. 

27. González-Quintero VH, Jiménez JJ, Jy W, Mauro LM, Hortman L, O'Sullivan MJ, Ahn Y. 

Elevated plasma endothelial microparticles in preeclampsia. Am J Obstet Gynecol. 

2003;189:589-593.  



 

 

20 

28. Preston RA, Jy W, Jimenez JJ, Mauro LM, Horstman LL, Valle M, Aime G, Ahn YS. Effects 

of severe hypertension on endothelial and platelet microparticles. Hypertension. 2003;41:211-

217. 

29. Bruder-Nascimento T, Ferreira NS, Zanotto CZ, et al. NLRP3 Inflammasome Mediates 

Aldosterone-Induced Vascular Damage. Circulation. 2016;134:1866-1880. 

30. Kadoya H, Satoh M, Sasaki T, Taniguchi S, Takahashi M, Kashihara N. Excess aldosterone is 

a critical danger signal for inflammasome activation in the development of renal fibrosis in 

mice. FASEB J. 2015;29:3899-3910. 

31. Ding W, Guo H, Xu C, Wang B, Zhang M, Ding F. Mitochondrial reactive oxygen species-

mediated NLRP3 inflammasome activation contributes to aldosterone-induced renal tubular 

cells injury. Oncotarget. 2016;7:17479-17491. 

32. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation 

of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10:417-426. 

33. Duewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis 

and activated by cholesterol crystals. Nature. 2010;464:1357-1361. 

34. Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, Ravussin E, 

Stephens JM, Dixit VD. The NLRP3 inflammasome instigates obesity-induced inflammation 

and insulin resistance. Nat Med. 2011;17:179-188. 

35. Vilaysane A, Chun J, Seamone ME, Wang W, Chin R, Hirota S, Li Y, Clark SA, Tschopp J, 

Trpkov K, Hemmelgarn BR, Beck PL, Muruve DA. The NLRP3 inflammasome promotes renal 

inflammation and contributes to CKD. J Am Soc Nephrol. 2010;21:1732-1744. 

36. Rossi GP, Andreis PG, Neri G, Tortorella C, Pelizzo MR, Sacchetto A, Nussdorfer GG. 

Endothelin-1 stimulates aldosterone synthesis in Conn's adenomas via both A and B receptors 

coupled with the protein kinase C- and cyclooxygenase-dependent signaling pathways. J 

Investig Med. 2000;48:343-350. 



 

 

21 

37. Rosolowsky LJ, Campbell WB. Endothelin enhances adrenocorticotropin-stimulated 

aldosterone release from cultured bovine adrenal cells. Endocrinology. 1990;126:1860-1866. 

38. Welch AK, Jeanette Lynch I, Gumz ML, Cain BD, Wingo CS. Aldosterone alters the chromatin 

structure of the murine endothelin-1 gene. Life Sci. 2016;159:121-126. 
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