198 research outputs found

    On Generating Binary Words Palindromically

    Full text link
    We regard a finite word u=u1u2⋯unu=u_1u_2\cdots u_n up to word isomorphism as an equivalence relation on {1,2,…,n}\{1,2,\ldots, n\} where ii is equivalent to jj if and only if xi=xj.x_i=x_j. Some finite words (in particular all binary words) are generated by "{\it palindromic}" relations of the form k∼j+i−kk\sim j+i-k for some choice of 1≤i≤j≤n1\leq i\leq j\leq n and k∈{i,i+1,…,j}.k\in \{i,i+1,\ldots,j\}. That is to say, some finite words uu are uniquely determined up to word isomorphism by the position and length of some of its palindromic factors. In this paper we study the function μ(u)\mu(u) defined as the least number of palindromic relations required to generate u.u. We show that every aperiodic infinite word must contain a factor uu with μ(u)≥3,\mu(u)\geq 3, and that some infinite words xx have the property that μ(u)≤3\mu(u)\leq 3 for each factor uu of x.x. We obtain a complete classification of such words on a binary alphabet (which includes the well known class of Sturmian words). In contrast for the Thue-Morse word, we show that the function μ\mu is unbounded

    Abelian bordered factors and periodicity

    Full text link
    A finite word u is said to be bordered if u has a proper prefix which is also a suffix of u, and unbordered otherwise. Ehrenfeucht and Silberger proved that an infinite word is purely periodic if and only if it contains only finitely many unbordered factors. We are interested in abelian and weak abelian analogues of this result; namely, we investigate the following question(s): Let w be an infinite word such that all sufficiently long factors are (weakly) abelian bordered; is w (weakly) abelian periodic? In the process we answer a question of Avgustinovich et al. concerning the abelian critical factorization theorem.Comment: 14 page
    • …
    corecore