28 research outputs found

    HASC2011corpus: Towards the Common Ground of Human Activity Recognition

    Get PDF
    UbiComp '11 Proceedings of the 13th international conference on Ubiquitous computing, September 17-21, 2011, Beijing, ChinaHuman activity recognition through the wearable sensor will enable a next-generation human-oriented biquitous computing. However, most of research on human activity recognition so far is based on small number of subjects, and non-public data. To overcome the situation, we have gathered 4897 accelerometer data with 116 subjects and compose them as HASC2011corpus. In the field of pattern recognition, it is very important to evaluate and to improve the recognition methods by using the same dataset as a common ground. We make the HASC2011corpus into public for the research community to use it as a common ground of the Human Activity Recognition. We also show several facts and results of obtained from the corpus

    HASC2011corpus: Towards the Common Ground of Human Activity Recognition

    Get PDF
    Human activity recognition through the wearable sensor will enable a next-generation human-oriented biquitous computing. However, most of research on human activity recognition so far is based on small number of subjects, and non-public data. To overcome the situation, we have gathered 4897 accelerometer data with 116 subjects and compose them as HASC2011corpus. In the field of pattern recognition, it is very important to evaluate and to improve the recognition methods by using the same dataset as a common ground. We make the HASC2011corpus into public for the research community to use it as a common ground of the Human Activity Recognition. We also show several facts and results of obtained from the corpus.UbiComp \u2711 Proceedings of the 13th international conference on Ubiquitous computing, September 17-21, 2011, Beijing, Chin

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    CO 2

    No full text
    corecore