388 research outputs found

    Recovering 3D structural properties of galaxies from SDSS-like photometry

    Full text link
    Because of the 3D nature of galaxies, an algorithm for constructing spatial density distribution models of galaxies on the basis of galaxy images has many advantages over surface density distribution approximations. We present a method for deriving spatial structure and overall parameters of galaxies from images and estimate its accuracy and derived parameter degeneracies on a sample of idealised model galaxies. The test galaxies consist of a disc-like component and a spheroidal component with varying proportions and properties. Both components are assumed to be axially symmetric and coplanar. We simulate these test galaxies as if observed in the SDSS project through ugriz filters, thus gaining a set of realistically imperfect images of galaxies with known intrinsic properties. These artificial SDSS galaxies were thereafter remodelled by approximating the surface brightness distribution with a 2D projection of a bulge+disc spatial distribution model and the restored parameters were compared to the initial ones. Down to the r-band limiting magnitude 18, errors of the restored integral luminosities and colour indices remain within 0.05 mag and errors of the luminosities of individual components within 0.2 mag. Accuracy of the restored bulge-to-disc ratios (B/D) is within 40% in most cases, and becomes worse for galaxies with low B/D, but the general balance between bulges and discs is not shifted systematically. Assuming that the intrinsic disc axial ratio is < 0.3, the inclination angles can be estimated with errors < 5deg for most of the galaxies with B/D < 2 and with errors < 15deg up to B/D = 6. Errors of the recovered sizes of the galactic components are below 10% in most cases. In general, models of disc components are more accurate than models of spheroidal components for geometrical reasons.Comment: 15 pages, 13 figures, accepted for publication in RA

    Butyrate Enhances Disease Resistance of Chickens by Inducing Antimicrobial Host Defense Peptide Gene Expression

    Get PDF
    Host defense peptides (HDPs) constitute a large group of natural broad-spectrum antimicrobials and an important first line of immunity in virtually all forms of life. Specific augmentation of synthesis of endogenous HDPs may represent a promising antibiotic-alternative approach to disease control. In this study, we tested the hypothesis that exogenous administration of butyrate, a major type of short-chain fatty acids derived from bacterial fermentation of undigested dietary fiber, is capable of inducing HDPs and enhancing disease resistance in chickens. We have found that butyrate is a potent inducer of several, but not all, chicken HDPs in HD11 macrophages as well as in primary monocytes, bone marrow cells, and jejuna and cecal explants. In addition, butyrate treatment enhanced the antibacterial activity of chicken monocytes against Salmonella enteritidis, with a minimum impact on inflammatory cytokine production, phagocytosis, and oxidative burst capacities of the cells. Furthermore, feed supplementation with 0.1% butyrate led to a significant increase in HDP gene expression in the intestinal tract of chickens. More importantly, such a feeding strategy resulted in a nearly 10-fold reduction in the bacterial titer in the cecum following experimental infections with S. enteritidis. Collectively, the results indicated that butyrate-induced synthesis of endogenous HDPs is a phylogenetically conserved mechanism of innate host defense shared by mammals and aves, and that dietary supplementation of butyrate has potential for further development as a convenient antibiotic-alternative strategy to enhance host innate immunity and disease resistance

    Excitons in a Photosynthetic Light-Harvesting System: A Combined Molecular Dynamics/Quantum Chemistry and Polaron Model Study

    Get PDF
    The dynamics of pigment-pigment and pigment-protein interactions in light-harvesting complexes is studied with a novel approach which combines molecular dynamics (MD) simulations with quantum chemistry (QC) calculations. The MD simulations of an LH-II complex, solvated and embedded in a lipid bilayer at physiological conditions (with total system size of 87,055 atoms) revealed a pathway of a water molecule into the B800 binding site, as well as increased dimerization within the B850 BChl ring, as compared to the dimerization found for the crystal structure. The fluctuations of pigment (B850 BChl) excitation energies, as a function of time, were determined via ab initio QC calculations based on the geometries that emerged from the MD simulations. From the results of these calculations we constructed a time-dependent Hamiltonian of the B850 exciton system from which we determined the linear absorption spectrum. Finally, a polaron model is introduced to describe quantum mechanically both the excitonic and vibrational (phonon) degrees of freedom. The exciton-phonon coupling that enters into the polaron model, and the corresponding phonon spectral function are derived from the MD/QC simulations. It is demonstrated that, in the framework of the polaron model, the absorption spectrum of the B850 excitons can be calculated from the autocorrelation function of the excitation energies of individual BChls, which is readily available from the combined MD/QC simulations. The obtained result is in good agreement with the experimentally measured absorption spectrum.Comment: REVTeX3.1, 23 pages, 13 (EPS) figures included. A high quality PDF file of the paper is available at http://www.ks.uiuc.edu/Publications/Papers/PDF/DAMJ2001/DAMJ2001.pd

    Landscape equivalent of the shoving model

    Get PDF
    It is shown that the shoving model expression for the average relaxation time of viscous liquids follows largely from a classical "landscape" estimation of barrier heights from curvature at energy minima. The activation energy involves both instantaneous bulk and shear moduli, but the bulk modulus contributes less than 8% to the temperature dependence of the activation energy. This reflects the fact that the physics of the two models are closely related.Comment: 4 page

    A series of PDB related databases for everyday needs

    Get PDF
    The Protein Data Bank (PDB) is the world-wide repository of macromolecular structure information. We present a series of databases that run parallel to the PDB. Each database holds one entry, if possible, for each PDB entry. DSSP holds the secondary structure of the proteins. PDBREPORT holds reports on the structure quality and lists errors. HSSP holds a multiple sequence alignment for all proteins. The PDBFINDER holds easy to parse summaries of the PDB file content, augmented with essentials from the other systems. PDB_REDO holds re-refined, and often improved, copies of all structures solved by X-ray. WHY_NOT summarizes why certain files could not be produced. All these systems are updated weekly. The data sets can be used for the analysis of properties of protein structures in areas ranging from structural genomics, to cancer biology and protein design

    Protein expression profiles indicative for drug resistance of non-small cell lung cancer

    Get PDF
    Data obtained from multiple sources indicate that no single mechanism can explain the resistance to chemotherapy exhibited by non-small cell lung carcinomas. The multi-factorial nature of drug resistance implies that the analysis of comprising expression profiles may predict drug resistance with higher accuracy than single gene or protein expression studies. Forty cellular parameters (drug resistance proteins, proliferative, apoptotic, and angiogenic factors, products of proto-oncogenes, and suppressor genes) were evaluated mainly by immunohistochemistry in specimens of primary non-small cell lung carcinoma of 94 patients and compared with the response of the tumours to doxorubicin in vitro. The protein expression profile of non-small cell lung carcinoma was determined by hierarchical cluster analysis and clustered image mapping. The cluster analysis revealed three different resistance profiles. The frequency of each profile was different (77, 14 and 9%, respectively). In the most frequent drug resistance profile, the resistance proteins P-glycoprotein/MDR1 (MDR1, ABCB1), thymidylate-synthetase, glutathione-S-transferase-π, metallothionein, O6-methylguanine-DNA-methyltransferase and major vault protein/lung resistance-related protein were up-regulated. Microvessel density, the angiogenic factor vascular endothelial growth factor and its receptor FLT1, and ECGF1 as well were down-regulated. In addition, the proliferative factors proliferating cell nuclear antigen and cyclin A were reduced compared to the sensitive non-small cell lung carcinoma. In this resistance profile, FOS was up-regulated and NM23 down-regulated. In the second profile, only three resistance proteins were increased (glutathione-S-transferase-π, O6-methylguanine-DNA-methyltransferase, major vault protein/lung resistance-related protein). The angiogenic factors were reduced. In the third profile, only five of the resistance factors were increased (MDR1, thymidylate-synthetase, glutathione-S-transferase-π, O6-methylguanine-DNA-methyltransferase, major vault protein/lung resistance-related protein)
    corecore