18 research outputs found

    Biophysically Realistic Filament Bending Dynamics in Agent-Based Biological Simulation

    Get PDF
    An appealing tool for study of the complex biological behaviors that can emerge from networks of simple molecular interactions is an agent-based, computational simulation that explicitly tracks small-scale local interactions – following thousands to millions of states through time. For many critical cell processes (e.g. cytokinetic furrow specification, nuclear centration, cytokinesis), the flexible nature of cytoskeletal filaments is likely to be critical. Any computer model that hopes to explain the complex emergent behaviors in these processes therefore needs to encode filament flexibility in a realistic manner. Here I present a numerically convenient and biophysically realistic method for modeling cytoskeletal filament flexibility in silico. Each cytoskeletal filament is represented by a series of rigid segments linked end-to-end in series with a variable attachment point for the translational elastic element. This connection scheme allows an empirically tuning, for a wide range of segment sizes, viscosities, and time-steps, that endows any filament species with the experimentally observed (or theoretically expected) static force deflection, relaxation time-constant, and thermal writhing motions. I additionally employ a unique pair of elastic elements – one representing the axial and the other the bending rigidity– that formulate the restoring force in terms of single time-step constraint resolution. This method is highly local –adjacent rigid segments of a filament only interact with one another through constraint forces—and is thus well-suited to simulations in which arbitrary additional forces (e.g. those representing interactions of a filament with other bodies or cross-links / entanglements between filaments) may be present. Implementation in code is straightforward; Java source code is available at www.celldynamics.org

    The Eps8/IRSp53/VASP Network Differentially Controls Actin Capping and Bundling in Filopodia Formation

    Get PDF
    There is a body of literature that describes the geometry and the physics of filopodia using either stochastic models or partial differential equations and elasticity and coarse-grained theory. Comparatively, there is a paucity of models focusing on the regulation of the network of proteins that control the formation of different actin structures. Using a combination of in-vivo and in-vitro experiments together with a system of ordinary differential equations, we focused on a small number of well-characterized, interacting molecules involved in actin-dependent filopodia formation: the actin remodeler Eps8, whose capping and bundling activities are a function of its ligands, Abi-1 and IRSp53, respectively; VASP and Capping Protein (CP), which exert antagonistic functions in controlling filament elongation. The model emphasizes the essential role of complexes that contain the membrane deforming protein IRSp53, in the process of filopodia initiation. This model accurately accounted for all observations, including a seemingly paradoxical result whereby genetic removal of Eps8 reduced filopodia in HeLa, but increased them in hippocampal neurons, and generated quantitative predictions, which were experimentally verified. The model further permitted us to explain how filopodia are generated in different cellular contexts, depending on the dynamic interaction established by Eps8, IRSp53 and VASP with actin filaments, thus revealing an unexpected plasticity of the signaling network that governs the multifunctional activities of its components in the formation of filopodia

    An Order of Magnitude Faster AIP1-Associated Actin Disruption than Nucleation by the Arp2/3 Complex in Lamellipodia

    Get PDF
    The mechanism of lamellipod actin turnover is still under debate. To clarify the intracellular behavior of the recently-identified actin disruption mechanism, we examined kinetics of AIP1 using fluorescent single-molecule speckle microscopy. AIP1 is thought to cap cofilin-generated actin barbed ends. Here we demonstrate a reduction in actin-associated AIP1 in lamellipodia of cells overexpressing LIM-kinase. Moreover, actin-associated AIP1 was rapidly abolished by jasplakinolide, which concurrently blocked the F-actin-cofilin interaction. Jasplakinolide also slowed dissociation of AIP1, which is analogous to the effect of this drug on capping protein. These findings provide in vivo evidence of the association of AIP1 with barbed ends generated by cofilin-catalyzed filament disruption. Single-molecule observation found distribution of F-actin-associated AIP1 throughout lamellipodia, and revealed even faster dissociation of AIP1 than capping protein. The estimated overall AIP1-associated actin disruption rate, 1.8 µM/s, was one order of magnitude faster than Arp2/3 complex-catalyzed actin nucleation in lamellipodia. This rate does not suffice the filament severing rate predicted in our previous high frequency filament severing-annealing hypothesis. Our data together with recent biochemical studies imply barbed end-preferred frequent filament disruption. Frequent generation of AIP1-associated barbed ends and subsequent release of AIP1 may be the mechanism that facilitates previously observed ubiquitous actin polymerization throughout lamellipodia

    Cell motility: the integrating role of the plasma membrane

    Get PDF
    The plasma membrane is of central importance in the motility process. It defines the boundary separating the intracellular and extracellular environments, and mediates the interactions between a motile cell and its environment. Furthermore, the membrane serves as a dynamic platform for localization of various components which actively participate in all aspects of the motility process, including force generation, adhesion, signaling, and regulation. Membrane transport between internal membranes and the plasma membrane, and in particular polarized membrane transport, facilitates continuous reorganization of the plasma membrane and is thought to be involved in maintaining polarity and recycling of essential components in some motile cell types. Beyond its biochemical composition, the mechanical characteristics of the plasma membrane and, in particular, membrane tension are of central importance in cell motility; membrane tension affects the rates of all the processes which involve membrane deformation including edge extension, endocytosis, and exocytosis. Most importantly, the mechanical characteristics of the membrane and its biochemical composition are tightly intertwined; membrane tension and local curvature are largely determined by the biochemical composition of the membrane and the biochemical reactions taking place; at the same time, curvature and tension affect the localization of components and reaction rates. This review focuses on this dynamic interplay and the feedbacks between the biochemical and biophysical characteristics of the membrane and their effects on cell movement. New insight on these will be crucial for understanding the motility process
    corecore