11 research outputs found

    Passerine Exposure to Primarily PCDFs and PCDDs in the River Floodplains Near Midland, Michigan, USA

    Get PDF
    House wren (Troglodytes aedon), tree swallow (Tachycineta bicolor), and eastern bluebird (Sialia sialis) tissues collected in study areas (SAs) downstream of Midland, Michigan (USA) contained concentrations of polychlorinated dibenzofurans (PCDFs) and polychlorinated dibenzo-p-dioxins (PCDDs) greater than in upstream reference areas (RAs) in the region. The sum of concentrations of PCDD/DFs (ΣPCDD/DFs) in eggs of house wrens and eastern bluebirds from SAs were 4- to 22-fold greater compared to those from RAs, whereas concentrations in tree swallow eggs were similar among areas. Mean concentrations of ΣPCDD/DFs and sum 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (ΣTEQsWHO-Avian), based on 1998 WHO avian toxic equivalency factors, in house wren and eastern bluebird eggs ranged from 860 (430) to 1500 (910) ng/kg wet weight (ww) and 470 (150) to 1100 (510) ng/kg ww, respectively, at the most contaminated study areas along the Tittabawassee River, whereas mean concentrations in tree swallow eggs ranged from 280 (100) to 760 (280) ng/kg ww among all locations. Concentrations of ΣPCDD/DFs in nestlings of all studied species at SAs were 3- to 50-fold greater compared to RAs. Mean house wren, tree swallow, and eastern bluebird nestling concentrations of ΣPCDD/DFs and ΣTEQsWHO-Avian ranged from 350 (140) to 610 (300) ng/kg ww, 360 (240) to 1100 (860) ng/kg ww, and 330 (100) to 1200 (690) ng/kg ww, respectively, at SAs along the Tittabawassee River. Concentrations of ΣTEQsWHO-Avian were positively correlated with ΣPCDD/DF concentrations in both eggs and nestlings of all species studied. Profiles of relative concentrations of individual congeners were dominated by furan congeners (69–84%), primarily 2,3,7,8-tetrachlorodibenzofuran and 2,3,4,7,8-pentachlorodibenzofuran, for all species at SAs on the Tittabawassee and Saginaw rivers but were dominated by dioxin congeners at upstream RAs

    Pharmacokinetics and Pharmacodynamics of Antifungals in Children and their Clinical Implications

    No full text
    Invasive fungal infections are a significant cause of morbidity and mortality in children. Successful management of these systemic infections requires identification of the causative pathogen, appropriate antifungal selection, and optimisation of its pharmacokinetic and pharmacodynamic properties to maximise its antifungal activity and minimise toxicity and the emergence of resistance. This review highlights salient scientific advancements in paediatric antifungal pharmacotherapies and focuses on pharmacokinetic and pharmacodynamic studies that underpin current clinical decision making. Four classes of drugs are widely used in the treatment of invasive fungal infections in children, including the polyenes, triazoles, pyrimidine analogues and echinocandins. Several lipidic formulations of the polyene amphotericin B have substantially reduced the toxicity associated with the traditional amphotericin B formulation. Monotherapy with the pyrimidine analogue flucytosine rapidly promotes the emergence of resistance and cannot be recommended. However, when used in combination with other antifungal agents, therapeutic drug monitoring of flucytosine has been shown to reduce high peak flucytosine concentrations, which are strongly associated with toxicity. The triazoles feature large inter-individual pharmacokinetic variability, although this pattern is less pronounced with fluconazole. In clinical trials, posaconazole was associated with fewer adverse effects than other members of the triazole family, though both posaconazole and itraconazole display erratic absorption that is influenced by gastric pH and the gastric emptying rate. Limited data suggest that the clinical response to therapy may be improved with higher plasma posaconazole and itraconazole concentrations. For voriconazole, pharmacokinetic studies among children have revealed that children require twice the recommended adult dose to achieve comparable blood concentrations. Voriconazole clearance is also affected by the cytochrome P450 (CYP) 2C19 genotype and hepatic impairment. Therapeutic drug monitoring is recommended as voriconazole pharmacokinetics are highly variable and small dose increases can result in marked changes in plasma concentrations. For the echinocandins, the primary source of pharmacokinetic variability stems from an age-dependent decrease in clearance with increasing age. Consequently, young children require larger doses per kilogram of body weight than older children and adults. Routine therapeutic drug monitoring for the echinocandins is not recommended. The effectiveness of many systemic antifungal agents has been correlated with pharmacodynamic targets in in vitro and in murine models of invasive candidiasis and aspergillosis. Further study is needed to translate these findings into optimal dosing regimens for children and to understand how these agents interact when multiple antifungal agents are used in combination

    Nest sanitation in passerine birds: implications for egg rejection in hosts of brood parasites

    No full text
    corecore