124 research outputs found

    A geometric analysis of hallux valgus: correlation with clinical assessment of severity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Application of plane geometry to the study of bunion deformity may represent an interesting and novel approach in the research field of hallux valgus. For the purpose of contributing to development of a different perspective in the assessment of hallux valgus, this study was conducted with three objectives: a) to determine the position on the intersection point of the perpendicular bisectors of the longitudinal axes of the first metatarsal and proximal phalanx (IP), b) to correlate the location of this point with hallux valgus deformity according to angular measurements and according to visual assessment of the severity carried out by three independent observers, and c) to assess whether this IP correlated with the radius of the first metatarsophalangeal arc circumference.</p> <p>Methods</p> <p>Measurements evaluated were intermetatarsal angle (IMA), hallux valgus angle (HVA), and proximal phalangeal articular angle (PPAA). The Autocad<sup>® </sup>program computed the location of the IP inside or outside of the foot. Three independent observers rated the severity of hallux valgus in photographs using a 100-mm visual analogue scale (VAS).</p> <p>Results</p> <p>Measurements of all angles except PPAA showed significantly lower values when the IP was located out of the foot more distantly and vice versa, significantly higher values for severe deformities in which the IP was found inside the foot (<it>p </it>< 0.001). The IP correlated significantly with VAS scores and with the length of the radius of the circle that included the first metatarsophalangeal arc circumference (<it>p </it>< 0.001)</p> <p>Conclusion</p> <p>The IP is a useful indicator of hallux valgus deformity because correlated significantly with IMA and HVA measurements, VAS scores obtained by visual inspection of the degree of deformity, and location of the center of the first metatarsophalangeal arc circumference.</p

    Molecular Dynamics of Mesophilic-Like Mutants of a Cold-Adapted Enzyme: Insights into Distal Effects Induced by the Mutations

    Get PDF
    Networks and clusters of intramolecular interactions, as well as their “communication” across the three-dimensional architecture have a prominent role in determining protein stability and function. Special attention has been dedicated to their role in thermal adaptation. In the present contribution, seven previously experimentally characterized mutants of a cold-adapted α-amylase, featuring mesophilic-like behavior, have been investigated by multiple molecular dynamics simulations, essential dynamics and analyses of correlated motions and electrostatic interactions. Our data elucidate the molecular mechanisms underlying the ability of single and multiple mutations to globally modulate dynamic properties of the cold-adapted α-amylase, including both local and complex unpredictable distal effects. Our investigation also shows, in agreement with the experimental data, that the conversion of the cold-adapted enzyme in a warm-adapted variant cannot be completely achieved by the introduction of few mutations, also providing the rationale behind these effects. Moreover, pivotal residues, which are likely to mediate the effects induced by the mutations, have been identified from our analyses, as well as a group of suitable candidates for protein engineering. In fact, a subset of residues here identified (as an isoleucine, or networks of mesophilic-like salt bridges in the proximity of the catalytic site) should be considered, in experimental studies, to get a more efficient modification of the features of the cold-adapted enzyme

    Challenging the Logics of Reformism and Humanism in Juvenile Justice Rhetoric

    Get PDF
    This article draws on contemporary policy discourse in order to advance claims about the intractable figure of the “bad” child in contemporary juvenile justice reforms in the United States (US). The article focuses in particular on the discourses of trauma and “brain science” to point to a form of neo-positivism that has arguably emerged and which challenges efforts to engage in systematic decarceration. The article also focuses on the idea of the “bad child” that persists in the commitment of some reformers to the necessity of confinement for some children. The article questions the extent to which new forms of positivism challenge our ability to leverage structural claims

    Expression, purification and preliminary crystallographic studies of alpha-amylase isozyme 1 from barley seeds.

    No full text
    International audienceThe germinating barley seed contains two major alpha-amylase isozyme families, AMY1 and AMY2, involved in starch degradation to provide energy used by the plant embryo for growth. Many years of difficulty in growing three-dimensional crystals of natural AMY1 have now been overcome by a nonapeptide truncation of the enzyme C-terminus. The truncated enzyme was overexpressed in Pichia pastoris, purified and crystallized by the hanging-drop vapour-diffusion method using polyethylene glycol 8000 as precipitant and 2-propanol as an additive. Crystals belong to the orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 88.36, b = 72.82, c = 61.74 A and one molecule per asymmetric unit.The germinating barley seed contains two major alpha-amylase isozyme families, AMY1 and AMY2, involved in starch degradation to provide energy used by the plant embryo for growth. Many years of difficulty in growing three-dimensional crystals of natural AMY1 have now been overcome by a nonapeptide truncation of the enzyme C-terminus. The truncated enzyme was overexpressed in Pichia pastoris, purified and crystallized by the hanging-drop vapour-diffusion method using polyethylene glycol 8000 as precipitant and 2-propanol as an additive. Crystals belong to the orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 88.36, b = 72.82, c = 61.74 A and one molecule per asymmetric unit
    corecore