14,776 research outputs found

    Boundary Conditions and the Generalized Metric Formulation of the Double Sigma Model

    Get PDF
    Double sigma model with the strong constraints is equivalent to the normal sigma model by imposing the self-duality relation. The gauge symmetries are the diffeomorphism and one-form gauge transformation with the strong constraints. We modify the Dirichlet and Neumann boundary conditions with the fully O(D,D)O(D, D) description from the doubled gauge fields. We perform the one-loop β\beta function for the constant background fields to find low energy effective theory without using the strong constraints. The low energy theory can also be O(D,D)O(D,D) invariant as the double sigma model. We use the other one way to construct different boundary conditions from the projectors. Finally, we combine the antisymmetric background field with the field strength to redefine a different O(D,D)O(D, D) generalized metric. We use this generalized metric to construct a consistent double sigma model with the classical and quantum equivalence. We show the one-loop β\beta function for the constant background fields and obtain the normal sigma model after integrating out the dual coordinates.Comment: 32 pages, minor changes, references adde

    Geometric Low-Energy Effective Action in a Doubled Spacetime

    Full text link
    The ten-dimensional supergravity theory is a geometric low-energy effective theory and the equations of motion for its fields can be obtained from string theory by computing β\beta functions. With dd compact dimensions, we can add to it an O(d,d;Z)O(d, d;\mathbb{Z}) geometric structure and construct the supergravity theory inspired by double field theory through the use of a suitable commutative star product. The latter implements the weak constraint of the double field theory on its fields and gauge parameters in order to have a closed gauge symmetry algebra. The consistency of the action here proposed is based on the orthogonality of the momenta associated with fields in their triple star products in the cubic terms defined for d≥1d\ge1. This orthogonality holds also for an arbitrary number of star products of fields for d=1d=1. Finally, we extend our analysis to the double sigma model, non-commutative geometry and open string theory.Comment: 27 pages, minor changes, references adde

    Dimensional Reduction of the Generalized DBI

    Full text link
    We study the generalized Dirac-Born-Infeld (DBI) action, which describes a qq-brane ending on a pp-brane with a (qq+1)-form background. This action has the equivalent descriptions in commutative and non-commutative settings, which can be shown from the generalized metric and Nambu-Sigma model. We mainly discuss the dimensional reduction of the generalized DBI at the massless level on the flat spacetime and constant antisymmetric background in the case of flat spacetime, constant antisymmetric background and the gauge potential vanishes for all time-like components. In the case of q=2q=2, we can do the dimensional reduction to get the DBI theory. We also try to extend this theory by including a one-form gauge potential.Comment: 29 pages, minor change
    • …
    corecore