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Abstract

Double sigma model with strong constraints is equivalent to the ordinary sigma model by imposing a self-
duality relation. The gauge symmetries are the diffeomorphism and one-form gauge transformation with the 
strong constraints. We consider boundary conditions in the double sigma model from three ways. The first 
way is to modify the Dirichlet and Neumann boundary conditions with a fully O(D, D) description from 
double gauge fields. We perform the one-loop β function for the constant background fields to find low-
energy effective theory without using the strong constraints. The low-energy theory can also have O(D, D)

invariance as the double sigma model. The second way is to construct different boundary conditions from 
the projectors. The third way is to combine the antisymmetric background field with field strength to re-
define an O(D, D) generalized metric. We use this generalized metric to reconstruct a consistent double 
sigma model with the classical and quantum equivalence.
© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Duality shows the nontrivial equivalence between two theories. It gives us a hope to unify 
all known theories. It is one of the important problems in the M-theory. For the ten dimensional 
theories, we have the T- and S-duality. The T-duality is an equivalence between different radii. 
We exchange the momentum and winding modes in closed string theory and the Dirichlet and 
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Neumann boundary conditions in open string theory. The T-duality suffers from the T-fold prob-
lem in the closed string field theory [1,2]. Even for simple constant flux situation, we still find 
non-single valued fields because of non-isometry. The T-duality is not a well-defined transition 
function as gauge transformation or diffeomorphism. The S-duality is an equivalence between 
strong and weak coupling constants. Therefore, the S-duality is a non-perturbative duality so we 
cannot use perturbation with the coupling constant parameter. Invalidity of perturbation gives rise 
to a trouble. As a familiar example, it is the electric–magnetic duality of the abelian gauge theory. 
In the case of the non-abelian groups, the electric–magnetic duality is an open issue. In eleven 
dimensions, we combine the T- and S-duality to form the U-duality. The U-duality is expected to 
be a symmetry of the eleven dimensional supergravity.

The method of solving the T-fold problem is to extend from local to global geometry. So far 
many low-energy effective theories [3–10] are defined on local geometry. The brane theory with 
global geometry is the generalized Dirac–Born–Infeld (DBI) theory [11,12]. A non-commutative 
geometry of this theory at the semi-classical level (constant field strength) is governed by the gen-
eralized metric, which is an important element to combine tangent with cotangent bundle. This 
gives us a new perspective to construct the low-energy effective theory or extend understand-
ing on the T-fold. The low-energy effective theory has a corresponding sigma model [11–14]
from the new generalized metric. If we combine vector with one-form, a double geometry ap-
pears in their theories. This new geometry possibly be a good description to describe string theory 
[15,16]. They double coordinates (normal and dual coordinates) to embed the T-duality rule in the 
O(D, D) structure for the closed string theory [17–28]. This extension gives the Courant bracket, 
which shows a way to solve the T-fold problem [29,30]. Its extension helps us to define exotic 
brane. The source of exotic brane is non-geometric flux (Q- and R-flux). One example is the 
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2-brane theory [31]. This brane theory comes from the Neveu–Schwarz five-brane (NS5-brane) 
by performing two times T-duality. The double geometry suffers from constraints. The relaxing 
constraints [32] is a hard problem due to the generalized Lie derivative is not a closed algebra 
without applying constraints in the double geometry. Recent reviews of double geometry are in 
[33–35]. For the same understanding of the U-duality as the T-duality, we need to extend this 
double geometry to the exceptional field theory or exceptional generalized geometry [36,37].

Double geometry of open string is proposed from [38]. They use the similar ways with the 
closed string theory and suggest that the projectors should satisfy the boundary conditions. The 
gauge transformation and properties [39,40] of a theory can be understood from the generalized 
geometry [41,42]. The extension of the gauge transformation from the generalized geometry 
to double geometry of the ten dimensional supergravity is governed by the F -bracket [43]. 
The strong constraints (removing the dependence of the dual coordinates) of the F -bracket 
has an exact one-form difference from the Courant bracket. A double sigma model with open 
string is found from this gauge transformation with classical equivalence and quantum equiva-
lence at one-loop level [44]. Quantum fluctuation of string theory also gives a higher derivative 
gravity theory at low-energy level [45]. One-loop β function of a double sigma model for the 
closed string with the dilaton gives the consistent low-energy effective action [46,47]. The con-
ditions of the quantum conformal and Lorentz invariance are also shown in [48]. The most 
interesting case of the one-loop quantum fluctuation is to simultaneously consider the fluctua-
tion of the ordinary and dual coordinates, which gives us the correct equation of motion for the 
generalized metric [49]. This calculation exactly shows a low-energy effective action of the gen-
eralized metric formulation [27]. The covariant version of the double sigma model is constructed 
in [50].
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Double geometry only shows the manifest formulation for the T-duality rule from the 
O(D, D) description. We never discuss the manifest S-duality rule in this O(D, D) formula-
tion. It possibly be embedded in the O(D, D) structure. The electric–magnetic duality in the 
electromagnetism is exchanging the electric and magnetic fields. It is equivalent to exchanging 
the field strength. The standard procedure of the electric–magnetic duality at quantum level is the 
auxiliary field method. But this method is not manifest because we do not put ordinary and dual 
gauge fields together. We double gauge fields to study a manifest electric–magnetic duality. We 
expect that exchanging gauge fields gives the manifest electric–magnetic duality rule. It possibly 
be a new way to embed the S-duality in a new perspective as the manifest T-duality rule. We 
naively double gauge fields in the double sigma model. Then the boundary term does not break 
O(D, D) invariance. The one-loop β function gives a low-energy effective action consistent with 
the O(D, D) description. We also calculate the non-commutative relation at the semi-classical 
level. The non-commutativity of the double gauge fields relies on the field strength. This situa-
tion is the consistent with the D-brane theory without doubling coordinates. In this formulation, 
we use a new degrees of freedom of the gauge field to enlarge symmetries and modify boundary 
conditions. For a consistent gauge symmetry, we need to use more constraints to kill this new 
degrees of freedom. The double gauge fields is an interesting way to enlarge symmetry structure 
although we need to put one more field which is not in the supergravity description. We propose 
projectors to consider more choices of boundary conditions on σ 1-direction. This method is a 
way to extend double gauge fields formulation with different boundary conditions. In this case, 
we can find a particular choice of the projects to obtain consistent DBI action for the one-loop β
function. Finally, we combine the antisymmetric background field and field strength to obtain a 
different O(D, D) generalized metric to construct a low-energy action from this generalized met-
ric and scalar dilaton [44]. We also use this generalized metric to build a new double sigma model 
with the classical and quantum equivalence. The consistency check on the quantum equivalence 
from two ways. The first way is the one-loop β function for the constant background fields and 
the second way is to obtain the ordinary sigma model when integrating out the dual coordinates. 
This double sigma model shows a different perspective to observe the manifest semi-classical 
non-commutative geometry. It should have more different theoretical viewpoints than [43]. In 
this construction, we have a new degrees of freedom on the bulk. In the closed string theory, 
we do not have one-form gauge potential. In this double sigma model, we have one-form gauge 
potential without using the strong constraints on the bulk. By using the strong constraints, the 
degree of freedom for the one-form gauge potential should disappear. The interesting issue in this 
double sigma model is that we have one-form gauge symmetry without the strong constraints. We 
remind one truth that the Seiberg–Witten map comes from the one-form gauge transformation. 
This truth implies that the low-energy effective action of the double sigma model should have 
the Seiberg–Witten map and Moyal product. Because of the new degree of freedom (one-form 
gauge potential) on the bulk, we have possibility to find the Moyal product on the bulk.

The plan of this paper is to first review the double sigma model in Section 2. Then we dou-
ble gauge fields, compute the one-loop β function, show the low energy effective action and 
non-commutative relation in Section 3. We also use projectors to realize boundary conditions on 
σ 1-direction in Section 4. Combining the antisymmetric background field and field strength to 
form a different generalized metric, constructing a double sigma model from this different gen-
eralized metric, and showing classical and quantum equivalence in Section 5. Finally, we discuss 
and conclude in Section 6.
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2. Review of the double sigma model

We first review the double sigma model, then show classical equivalence for the double sigma 
model. At the end of the section, we write the gauge transformation.

2.1. Classical equivalence

We start from

S = −
∫

d2σ
1

2
∂αXAHAB∂αXB, (1)

where α = 0, 1 (we use the Greek indices to indicate the worldsheet coordinates), A =
0, 1, · · · , 2D − 1 (we define the double target indices from A to K), and

XA ≡
(

X̃m

Xm

)
,

H−1 ≡ H• • =
(
HAB

)−1 =
(

g−1 −g−1B

Bg−1 g − Bg−1B

)
. (2)

The index m = 0, 1, · · · , D − 1 (we define the non-double target indices from m to z). The 
ordinary coordinates are defined to be Xm and dual coordinates are defined to be X̃m. Under the 
T-duality on all dimensions, ordinary and dual coordinates are exchanged. The metric field is g
and antisymmetric background field is B . We also define

H ≡ H• • . (3)

The name for H is generalized metric. For double target indices, we use η ≡
(

0 I

I 0

)
to raise 

and lower indices for the O(D, D) tensors. The index α is raised and lowered by the flat metric. 

The worldsheet metric is (−, +) signature. If h ≡
(

a b

c d

)
(a, b, c and d are D ×D matrices) is 

an O(D, D) tensor, it satisfies hT ηh = η, where T means the transpose of matrix. The equation 
of motion for XA in the constant background is

∂α(HAB∂αXB) = 0. (4)

We need to eliminate the half degrees of freedom to show classical equivalence with the ordinary 
sigma model so we impose a self-duality relation

∂αXA = εαβηABHBC(∂βXC), (5)

where ε01 = −ε10 = 1. The matrix form is(
∂αX̃

∂αX

)
=

(
0 I

I 0

)(
g−1 −g−1B

Bg−1 g − Bg−1B

)(
εαβ∂βX̃

εαβ∂βX

)

=
(

Bg−1 g − Bg−1B

g−1 −g−1B

)(
εαβ∂βX̃

εαβ∂βX

)

=
(

Bg−1(εαβ∂βX̃) + (g − Bg−1B)(εαβ∂βX)

g−1(εαβ∂βX̃) − g−1B(εαβ∂βX)

)
. (6)

We use two equations to represent the matrix form
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∂αX̃ = Bg−1(εαβ∂βX̃) + (g − Bg−1B)(εαβ∂βX),

∂αX = g−1(εαβ∂βX̃) − g−1B(εαβ∂βX). (7)

Hence, we can solve ∂αX̃ from (7).

∂αX̃ = εαβ g∂βX + B∂αX. (8)

The equations of motion can be rewritten as

∂α

(
g−1∂αX̃ − g−1B∂αX

Bg−1∂αX̃ + (g − Bg−1B)∂αX

)
= 0. (9)

We can obtain

∂α
(
Bg−1∂αX̃ + (g − Bg−1B)∂αX

)
m

= ∂α
(
Bg−1(εαβ g∂βX + B∂αX) + (g − Bg−1B)∂αX

)
m

= ∂α
(
εαβB∂βX + Bg−1B∂αX + g∂αX − Bg−1B∂αX

)
m

= ∂α
(
εαβB∂βX + g∂αX

)
m

(10)

for the lower component of the equations of motion. This matches with the equation of motion 
for the ordinary sigma model by changing from B to −B . The ordinary sigma model is

1

2

∫
d2σ

(
∂αXmgmn∂

αXn − εαβ∂αXmBmn∂βXn

)
. (11)

This double sigma model (1) with the strong constraints describes the ordinary sigma model with 
constant background. A difficulty for extension from the constant background to non-constant 
background is the self-duality relation. The same self-duality relation cannot be used for the 
non-constant background. However, we use

Sbulk = 1

2

∫
d2σ

(
∂1X

AHAB∂1X
B − ∂1X

AηAB∂0X
B

)
(12)

to discuss the non-constant background case. Using the strong constraints ∂̃m = 0 (∂m ≡ ∂
∂xm , 

∂̃m ≡ ∂
∂x̃m

and ∂A ≡
(

∂̃m

∂m

)
) and a self-duality relation

Hm
B∂1X

B − ηm
B∂0X

B = 0 (13)

to guarantee classical equivalence with the ordinary sigma model. If we consider the Neumann 
boundary condition on σ 1-direction, we should put

Sboundary = −
∫

dσ 0 Am∂0X
m (14)

to obtain the gauge invariance on the boundary. The one-loop β function of this double sigma 
model (12) for the constant background fields which should give the DBI model [44].
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2.2. Gauge transformation

The gauge transformation is

δξX
A = ξC∂CXA + (∂AξC − ∂CξA)XC,

δξHAB = ξC∂CHAB + (∂AξC − ∂CξA)HCB + (∂BξC − ∂CξB)HAC,

δξAm = 
m +LεAm, (15)

where δξ is the gauge transformation, ξA ≡
(

ξ̃m

ξm

)
≡

(

m

εm

)
, and Lε is the Lie derivative 

along the vector field ε. We assume that the gauge parameters do not depend on the worldsheet 
coordinates. Then the double sigma model is gauge invariant and the gauge algebra is closed 
under the F -bracket with ∂̃m = 0 [43].

[δ1, δ2] = −δ[ξ1,ξ2]F , (16)

where

[ξ1, ξ2]AF =
(

ξD
1 ∂DξA

2 − ξD
2 ∂DξA

1

)
− 1

2

(
ξD

1 ∂Aξ2D − ξD
2 ∂Aξ1D

)

− 1

2
∂A

(
ξ2DZD

EξE
1

)
, (17)

where

Z ≡ ZA
B ≡

(−1 0
0 1

)
. (18)

The indices of Z are raised or lowered by η.

3. Double gauge fields

We double gauge fields on the boundary term in the double sigma model. Then we implement 
the self-duality relation and compute the one-loop β function to find the low-energy effective 
theory. We also discuss the semi-classical non-commutative geometry and the picture of the 
manifest electric–magnetic duality from the double gauge fields.

3.1. One-loop β function

When we double gauge fields, the boundary term becomes

−
∫

dσ 0 AB∂0X
B, (19)

where

AB ≡
(

Ãm

Am

)
. (20)

The name for Ãm is the dual gauge field. The boundary conditions on σ 1-direction are

HAB∂1X
B = FAB∂0X

B, δXAηAB∂0X
B = 0, (21)
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where FBC ≡ ∂BAC − ∂CAB , and the boundary condition on σ 0-direction is

δXA = 0, (22)

where δ is the variation. We set B = 0 and g = I (I ≡ identity matrix) to simplify the calculation 
without losing generality in the case of the constant background. We follow [51] to calculate the 
one-loop β function. The variation of the boundary term is

−
∫

dσ 0
(

AB∂0X
B + ξBFBC∂0X

C + 1

2

(
ξBξC∂BFCD∂0X

D + ξB∂0ξ
CFBC

))
. (23)

Therefore, the Green’s function on the bulk is(
HAB∂2

1 − ηAB∂0∂1

)
GB

C(σ,σ ′) = iIACδ2(σ − σ ′) (24)

and the Green’s function on the boundary is

HAB∂1G
BC − FAB∂0G

BC = 0. (25)

The counter term on the boundary is

−1

2

∫
dσ 0 �A∂0X

A, (26)

where

�A = lim
ε→0

GBC(ε ≡ σ 0 − σ 0′)∂BFCA. (27)

The β function is defined by

βA ≡ ε
∂�A

∂ε
. (28)

It is useful to change coordinates to solve the Green’s function.

z = σ + τ, z̄ = σ − τ. (29)

From the same procedure as [44], we can obtain√
det

(
H+ F

)
, (30)

from βA = 0. This action has the O(D, D) invariance as the double sigma model. For the non-
constant background fields, we should obtain the same closed string theory from the bulk term 
and

e−d

√
det

(
H+ F ′

)
(31)

from the boundary term. We define

e−d ≡
(

− detg

) 1
4

e−φ, F ′ ≡
(

1 B

0 1

)(
Bmn − Fmn −Fm

n

Fm
n Fmn

)(
1 0

−B 1

)
, (32)

where d is called scalar dilaton and φ is called dilaton. When we exchange the ordinary gauge 
field and dual gauge field, perform the T-duality on the background fields and assume that the 
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ordinary gauge and dual gauge fields only depend on the ordinary coordinates, we still obtain 
the consistent pull-back DBI action. The generalized metric implies the manifest T-duality and 
equivalence between the closed and open string parameters without the field strength. The leading 
order of the action on the flat background is the Yang–Mills term. If we assume that the dual 
gauge field is a constant field, we can obtain the ordinary Yang–Mills term. Alternatively, the 
ordinary gauge field is a constant field, we can obtain the dual Yang–Mills term. The situation 
exactly equals to the electric–magnetic duality. But we can find the electric–magnetic duality 
manifestly from the double gauge fields in all dimensions. The ordinary electric–magnetic duality 
only occurs in four dimensions. It implies that the exchanging gauge fields should have larger 
symmetry than the ordinary electric–magnetic duality. The primary reason should be that we lose 
the Poincaré lemma when exchanging ordinary and dual gauge fields. In the end of this section, 
we calculate the non-commutative relation at the semi-classical level. We first calculate

〈XA(z)XB(z′)〉 = − 1

2π

[
HAB ln | z − z′ | −HAB ln | z + z̄′ |

+
(

1

H−1 + ηFη
H−1 1

H−1 − ηFη

)AB

ln | z + z̄′ |2

−
(

1

H−1 + ηFη
ηFη

1

H−1 − ηFη

)AB

ln
z + z̄′

z̄ + z′

]
(33)

on the boundary (z = −z̄ and z′ = −z̄′). It can be solved from

HAB(∂z + ∂z̄)X
B − FAB(∂z − ∂z̄)X

B = 0. (34)

We restrict to the real z and z′ and denote them to be τ and −τ ′. Hence, we obtain

< XAXB > = − 1

2π

(
1

H−1 + ηFη
H−1 1

H−1 − ηFη

)AB

ln | τ − τ ′ |2

− i

2

(
1

H−1 + ηFη
ηFη

1

H−1 − ηFη

)AB

ε(τ − τ ′), (35)

where ε(τ ) = 1 when τ > 0 and ε(τ ) = −1 when τ < 0. We interpret τ as time. The non-
commutative relation at the semi-classical level is

[XA(τ),XB(τ)] = T

(
XA(τ)XB(τ−) − XA(τ)XB(τ+)

)

= −i

(
1

H−1 + ηFη
ηFη

1

H−1 − ηFη

)AB

. (36)

It means that we can find the non-commutative geometry between the ordinary and dual co-
ordinates. The non-commutativity is governed by the field strength. If we do not turn on the 
dual gauge field, we only have non-commutativity on the ordinary coordinates. For the con-
stant field strength and the O(D, D) boundary conditions, we can embed the semi-classical 
non-commutative geometry in the O(D, D) structure [52].
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4. Boundary conditions from projectors

We use projectors to study more boundary conditions. This way is also suitable for the double 
gauge fields. We implement the boundary conditions on the σ 1-direction from the projectors. 
The boundary conditions on the σ 1-direction are

�NH−1∂1X = 0, �D∂0X = 0. (37)

The first one is the Neumann-like boundary condition and the other one is the Dirichlet-like 
boundary condition. Then we will use the projectors to project out the Dirichlet-like boundary 
condition on σ 1-direction. The projectors (�N and �D) should satisfy

�2
N = �N, �N + �T

D = 1. (38)

We can derive

�2
D = �D (39)

from (38). The equation of motion on the boundary is

�N

(
H−1∂1X + η∂0X

)
= 0. (40)

Then we can obtain

�N

(
H−1∂1X + η�T

N∂0X

)
= 0. (41)

If we want to get the Neumann-like boundary condition and remove the Dirichlet-like boundary 
condition, we need to assume

�Nη�T
N = 0. (42)

The Neumann-like boundary condition is equivalent to projecting out the dual coordinates. Al-
ternatively, we use η to go to the dual frame. We equivalently exchange the ordinary and dual 
coordinates. It implies that we have the Dirichlet-like boundary condition with respect to the 
dual frame. Then we either project out the dual coordinates with respect to the ordinary frame or 
project out the ordinary coordinates with respect to the dual frame to obtain the Neumann-like 
boundary condition. If we use η to transform X, we obtain

X′ = ηX. (43)

Therefore, we can deduce

X′T
(

�N + �T
D

)
X′ = XT η

(
�N + �T

D

)
ηX. (44)

Assuming

η�Nη = �D, (45)

we can obtain

XT

(
�T

N + �D

)
X. (46)



C.-T. Ma / Nuclear Physics B 898 (2015) 30–52 39
We use

�Nη = η�D, �Nη�T
N = 0 (47)

to show

�D�T
N = 0. (48)

It is equivalent to showing

�Dη�T
D = 0. (49)

We assume

�N =
(

a b

c d

)
. (50)

From �T
Dη�D = 0, we obtain(
1 − a −b

−c 1 − d

)(
0 1
1 0

)(
1 − aT −cT

−bT 1 − dT

)

=
( −b 1 − a

1 − d −c

)(
1 − aT −cT

−bT 1 − dT

)

=
(−b(1 − aT ) − (1 − a)bT bcT + (1 − a)(1 − dT )

(1 − d)(1 − aT ) + cbT −(1 − d)cT − c(1 − dT )

)
= 0. (51)

The conditions are

b(1 − aT ) = −(1 − a)bT , bcT = −(1 − a)(1 − dT ),

(1 − d)cT = −c(1 − dT ). (52)

From �Nη�T
N = 0, we obtain(

a b

c d

)(
0 1
1 0

)(
aT cT

bT dT

)
=

(
b a

d c

)(
aT cT

bT dT

)

=
(

baT + abT bcT + adT

daT + cbT dcT + cdT

)
= 0. (53)

Then we can get conditions

baT = −abT , bcT = −adT , dcT = −cdT . (54)

From �2
N = �N , we can obtain(
a b

c d

)(
a b

c d

)
=

(
a2 + bc ab + bd

ca + dc cb + d2

)
=

(
a b

c d

)
. (55)

Therefore, we find

a2 + bc = a, ab + bd = b, ca + dc = c, cb + d2 = d. (56)

According to the above conditions, we obtain

b = −bT , baT = ab, a + dT = 1, bc = a(1 − a),

cT = −c, aT c = ca. (57)
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The above construction is exactly consistent with [38]. The Green’s function on the boundary is

�T
N

(
H−1∂1G − ηFη∂0G

)
= 0. (58)

If we use the same way as [51] to obtain the Green’s function for all projectors, we should meet 
trouble. The problem is that the projectors are not invertible. However, we can solve them case 
by case. For example, we can choose

�N =
(

0 0
0 1

)
(59)

to find the DBI theory as [44].

5. Generalized metric formulation

We combine the antisymmetric background field and field strength to form a different 
O(D, D) generalized metric. We use this generalized metric and scalar dilaton to construct the 
low-energy effective action. From the same generalized metric, we reconstruct our double sigma 
model. We also check the one-loop β function in the case of the constant background field with 
the strong constraints. We consistently obtain the DBI action. Finally, we integrate out the dual 
coordinates of the double sigma model with the strong constraints, then we can obtain the ordi-
nary sigma model. It shows quantum equivalence between the double and ordinary sigma model 
exactly.

5.1. Low-energy effective action

We consider low-energy effective theory for the closed and open string theory. The open string 
part is based on the diffeomorphism and one-form gauge transformation. The effective action is 
described by the DBI action. The closed string theory can be constructed from the O(D, D)

structure, Z2 symmetry, gauge symmetry with the strong constraints and two derivative terms. 
Here, we redefine our generalized metric by replacing Bmn by Bmn − Fmn. Then we can avoid 
using the field strength to write the low-energy effective action. The Z2 symmetry is

Bmn → −Bmn, ∂̃m → −∂̃m. (60)

We can rewrite

∂̃m → −∂̃m (61)

as

∂A → Z ∂A . (62)

The transformation of the HAB under the Z2 transformation. We have

HAB → ZHABZ , HAB → ZHABZ . (63)

Then the action can be constructed from the gauge symmetry (with the strong constraints) by 
using all possible O(D, D) elements (∂A, HAB , HAB and d) up to a boundary term and only 
considering two derivative terms. The action is



C.-T. Ma / Nuclear Physics B 898 (2015) 30–52 41
S2 =
∫

dx dx̃ e−2d
(1

8
HAB∂AHCD∂BHCD − 1

2
HAB∂BHCD∂DHAC

− 2∂Ad∂BHAB + 4HAB ∂Ad∂Bd
)
. (64)

The DBI action is

S1 =
∫

dx dx̃ e−d

(
− det(Hmn)

) 1
4

. (65)

Because of the boundary conditions are not modified from the strong constraints except for the 
generalized metric does not depend on the dual coordinates in S1, we only rewrite the DBI action 
in terms of the generalized metric and scalar dilation. We combine closed and open string to 
show the total action.

ST = S1 + αS2

=
∫

dx dx̃

[
e−d

(
− det(Hmn)

) 1
4

+ αe−2d

(
1

8
HAB∂AHCD∂BHCD − 1

2
HAB∂BHCD∂DHAC

− 2∂Ad∂BHAB + 4HAB ∂Ad∂Bd

)]
, (66)

where α is an arbitrary constant. If we use the strong constraints, we obtain

∫
dx

√−detg

[
e−φ

(
− det(g + B − F)

) 1
2
(

− detg

)− 1
2

+ αe−2φ

(
R + 4(∂φ)2 − 1

12
H 2

)]
, (67)

where R is the Ricci scalar and H = dB is the three form field strength. If we set D = 10, the 
action is the low-energy effective theory of the D9-brane from the one-loop β function [53].

5.2. Double sigma model

We replace Bmn by Bmn − Fmn to reconstruct our double sigma model. We discuss the clas-
sical equivalence and implement the self-duality relation at off-shell level. Finally, we calculate 
the one-loop β function to obtain the desirable DBI action for the constant background fields and 
integrate out the dual coordinates to get the ordinary sigma model.

5.2.1. Action
We replace Bmn by Bmn −Fmn to rewrite our double sigma model without using the boundary 

term. But we still have the boundary conditions to obtain the effects of the open string. Although 
we replace Bmn by Bmn −Fmn, we still use B in the generalized metric for simplicity. The action 
is

1
∫

d2σ

(
∂1XH−1∂1X − ∂1Xη∂0X

)
. (68)
2
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The boundary conditions on σ 1-direction (the Neumann boundary condition) are

Hm
A∂1X

A − ηm
A∂0X

A = 0, HmA∂1X
A = 0, ηmA∂0X

A = 0 (69)

and the boundary condition on σ 0-direction (the Dirichlet boundary condition) is

δXm = 0. (70)

We remind that the boundary conditions are not modified from the strong constraints except for 
the generalized metric does not depend on the dual coordinates.

5.2.2. Classical equivalence
We use an on-shell self-duality relation and strong constraints to show the classical equiva-

lence with the ordinary sigma model. It implies that we can find the same equations of motion as 
the ordinary sigma model. The equations of motion of (68) on the bulk are

∂1

(
HmA∂1X

A − ηmA∂0X
A

)
= 1

2
∂1X

A∂mHAB∂1X
B,

∂1

(
Hm

A∂1X
A − ηm

A∂0X
A

)
= 1

2
∂1X

A∂mHAB∂1X
B. (71)

If we impose the strong constraints, we can obtain

∂1

(
Hm

A∂1X
A − ηm

A∂0X
A

)
= 0. (72)

A suitable self-duality relation is

Hm
A∂1X

A − ηm
A∂0X

A = 0. (73)

The self-duality relation is equivalent to

∂1X̃m = gmn∂0X
n + Bmn∂1X

n. (74)

The other equation of motion is

∂1

[(
g − Bg−1B

)
mn

∂1X
n +

(
Bg−1

)
m

n∂1X̃n − ∂0X̃m

]

= 1

2
∂1X

p∂m

(
g − Bg−1B

)
pq

∂1X
q + ∂1X

p∂m

(
Bg−1

)
p

q∂1X̃q

+ 1

2
∂1X̃p∂mgpq∂1X̃q . (75)

We find the same equation of motion as the ordinary sigma model by using the self-duality 
relation to remove the dual coordinates.

∂1

[(
g − Bg−1B

)
mn

∂1X
n +

(
Bg−1

)
m

n∂1X̃n − ∂0X̃m

]

= ∂1

(
gmn∂1X

n + Bmn∂0X
n

)
− ∂0

(
gmn∂0X

n + Bmn∂1X
n

)
. (76)

1

2
∂1X

p∂m

(
g − Bg−1B

)
pq

∂1X
q + ∂1X

p∂m

(
Bg−1

)
p

q∂1X̃q + 1

2
∂1X̃p∂mgpq∂1X̃q

= −1
∂0X

p∂mgpq∂0X
q + 1

∂1X
p∂mgpq∂1X

q + ∂1X
p∂mBpq∂0X

q. (77)

2 2
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Let us consider the effects of the one-form gauge potential on the bulk. Then the related terms of 
the equations of motion on the bulk are

∂1Bmn∂0X
n − ∂0Bmn∂1X

n − ∂1X
p∂mBpq∂0X

q

= ∂1X
p∂pBmq∂0X

q − ∂1X
p∂qBmp∂0X

q − ∂1X
p∂mBpq∂0X

q

= ∂1X
p∂pBmq∂0X

q + ∂1X
p∂qBpm∂0X

q + ∂1X
p∂mBqp∂0X

q

= ∂1X
pHpmq∂0X

q. (78)

It implies that the one-form gauge potential does not have degrees of freedom on the bulk at 
classical level. On the boundary, we have

gmn∂1X
n + Bmn∂0X

n = 0. (79)

This boundary condition is the ordinary Neumann boundary condition. We show that this double 
sigma model with the on-shell self-duality relation gives a consistent result with the ordinary 
sigma model.

5.2.3. Self-duality relation at off-shell level
We implement the self-duality relation at off-shell level in this section. The equations of mo-

tion on the bulk are

∂1

(
g−1∂1X̃ − g−1B∂1X − ∂0X

)m

= 0,

∂1

(
Bg−1∂1X̃ + (

g − Bg−1B
)
∂1X − ∂0X̃

)
m

= 1

2
∂1X∂m

(
g − Bg−1B

)
∂1X + ∂1X∂m

(
Bg−1

)
∂1X̃ + 1

2
∂1X̃∂mg−1∂1X̃. (80)

To obtain the self-duality relation and same equations of motion as the ordinary sigma model, 
we shift XM (XM → XM + f M(σ 0)) and redefine g and B . Then we obtain

∂1X̃m = Bmn∂1X
n + gmn∂0X

n,

∂1

(
gmn∂1X

n + Bmn∂0X
n

)
− ∂0

(
gmn∂0X

n + Bmn∂1X
n

)

= −1

2
∂0X

p∂mgpq∂0X
q + 1

2
∂1X

p∂mgpq∂1X
q + ∂1X

p∂mBpq∂0X
q. (81)

On the boundary, the equations of motion are

∂1X̃ − B∂1X − g∂0X = 0,

Bg−1∂1X̃ + (
g − Bg−1B

)
∂1X = 0. (82)

Therefore, we obtain

g∂1X + B∂0X = 0. (83)

From the above discussion, the self-duality relation can be implemented at the off-shell level.
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5.2.4. One-loop β function for the constant background fields
We compute the one-loop β function for the constant background fields in this section. In the 

end of this section, we will obtain the consistent DBI action. We first expand X (X → ξ ) for the 
action of the double sigma model. Hence, we obtain

1

2
∂1ξ

m
(
g − Bg−1B

)
mn

∂1ξ
n + ∂1ξ

m
(
Bg−1)

m
n∂1ξ̃n + 1

2
∂1ξ̃m

(
g−1)mn

∂1ξ̃n

− 1

2
∂1ξ

m∂0ξ̃m − 1

2
∂1ξ̃m∂0ξ

m + ∂1ξ
mξp∂p

(
g − Bg−1B

)
mn

∂1X
n

+ ∂1ξ
mξp∂p

(
Bg−1)

m
n∂1X̃n − ∂1ξ̃mξp∂p

(
g−1B

)m
n∂1X

n

+ 1

4
∂1X

pξmξn∂m∂n

(
g − Bg−1B

)
pq

∂1X
q + 1

2
∂1X

pξmξn∂m∂n

(
Bg−1)

p
q∂1X̃q, (84)

where Xm and X̃m satisfy the equations of motion. The linear order of ξm and ξ̃m disappear due 
to the equations of motion. We also use the strong constraints in our calculation. Because ξ̃ is at 
quadratic order, we can integrate out ξ̃ . This integration is equivalent to the integration of∫

d2σ
1

2
∂1φA∂1φ + φ∂1J, (85)

where A (A = AT ) and J are not related to φ. Then we integrate out φ, we obtain

exp

(
−

∫
d2σ

1

2
J∂1

(
∂1

(
A∂1

))−1

∂1J

)
∼

√
1

det(A)
exp

(
−

∫
d2σ

1

2
JA−1J

)
. (86)

The result of the integration on the exponent is equivalent to using

A∂1φ = J. (87)

We also use

(∂1)
T = −∂1 (88)

and ∂−1
1 vanishes on the boundary. In our case, we use

∂1ξ
m
(
Bg−1)

m
n + ∂1ξ̃m

(
g−1)mn − ∂0ξ

n − ξp∂p

(
g−1B

)n
m∂1X

m = 0 (89)

to calculate the integration in the action. The determinant is not related to the fluctuation fields 
so we do not need to discuss this term on the calculation of the one-loop β function. When we 
integrate by parts during the Gaussian integration process, the boundary terms will vanish due to 
the boundary conditions. Then we separate two parts to discuss. The first part is not related to ξ̃ . 
We calculate all terms related to ξ̃ in the second part. We start from the first part:

1

2
∂1ξ

m

(
g − Bg−1B

)
mn

∂1ξ
n + ∂1ξ

mξp∂p

(
− Bg−1B

)
mn

∂1X
n

+ ∂1ξ
mξp∂pBmn∂0X

n + ∂1ξ
mξp

(
∂p

(
Bg−1)B)

mn

∂1X
n

+ 1

4
∂1X

pξmξn∂m∂n

(
− Bg−1B

)
pq

∂1X
q + 1

2
∂1X

pξmξn

(
∂m∂n

(
Bg−1)B)

pq

∂1X
q

+ 1
∂1X

pξmξn∂m∂nBpq∂0X
q

2
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= 1

2
∂1ξ

m

(
g − Bg−1B

)
mn

∂1ξ
n − ∂1ξ

mξp

(
Bg−1∂pB

)
mn

∂1X
n + ∂1ξ

mξp∂pBmn∂0X
n

− 1

2
∂1X

pξmξn

(
∂mBg−1∂nB

)
pq

∂1X
q + 1

2
∂1X

pξmξn∂m∂nBpq∂0X
q. (90)

Then we discuss the second part:

1

2
∂1ξ

m

(
Bg−1

)
m

n∂1ξ̃n − 1

2
∂1ξ̃m∂0ξ

m − 1

2
∂1ξ̃mξp∂p

(
g−1B

)m

n∂1X
n

= 1

2
∂1ξ

mξp

(
Bg−1∂pB

)
mq

∂1X
q + 1

2
∂1ξ

mBmq∂0ξ
q + 1

2
∂1ξ

m

(
Bg−1B

)
mq

∂1ξ
q

− 1

2
ξp∂pBqm∂1X

m∂0ξ
q − 1

2
gqm∂0ξ

m∂0ξ
q + 1

2
∂1ξ

mBmq∂0ξ
q

− 1

2

(
ξp∂pBqm∂1X

m

)
ξ r∂r

(
g−1B

)q

n∂1X
n − 1

2
gqn∂0ξ

nξ r∂r

(
g−1B

)q

s∂1X
s

+ 1

2
∂1ξ

mBmqξp∂p

(
g−1B

)q

n∂1X
n

= ∂1ξ
mBmq∂0ξ

q + 1

2
∂1ξ

m

(
Bg−1B

)
mq

∂1ξ
q − 1

2
∂0ξ

ngqn∂0ξ
q − ∂0ξ

mξp∂pBmq∂1X
q

+ ∂1ξ
mξp

(
Bg−1∂pB

)
mq

∂1X
q + 1

2
∂1X

pξmξn

(
∂mBg−1∂nB

)
pq

∂1X
q. (91)

We combine two parts.

−1

2
∂0ξ

mgmn∂0ξ
n + 1

2
∂1ξ

mgmn∂1ξ
n + ∂1ξ

mBmn∂0ξ
n

+ ∂1ξ
mξp∂pBmn∂0X

n − ∂0ξ
mξp∂pBmq∂1X

q + 1

2
∂1X

pξmξn∂m∂nBpq∂0X
q. (92)

The result is exactly consistent with the second order expansion of the ordinary sigma model. 
We redefine the one-form gauge field to absorb the constant antisymmetric background field into 
the one-form gauge field, then we obtain

−1

2
∂0ξ

mgmn∂0ξ
n + 1

2
∂1ξ

mgmn∂1ξ
n − ∂1

(
1

2
ξnξp∂n∂pAm∂0X

m + ξn∂nAm∂0ξ
m

)

+ ∂0

(
1

2
ξnξp∂n∂pAm∂1X

m + ξn∂nAm∂1ξ
m

)
. (93)

We impose the boundary conditions and integrate by parts on the boundary term, then we get∫
d2σ

(
1

2
ξmgmn∂

2
0 ξn − 1

2
ξmgmn∂

2
1 ξn

)

+
∫

dσ 0
(

1

2
ξmgmn∂1ξ

n + 1

2
ξm∂0ξ

nBmn + 1

2
ξmξn∂mBnp∂0X

p

)
. (94)

The Green’s function on the bulk is

gmn

(
∂2

0 − ∂2
1

)
Gnp = 4gmn∂z∂z̄G

np = 2iδm
pδ2(z − z′), (95)
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where

δ2(z − z′) ≡ 1

2
δ2(σ − σ ′). (96)

The solution of the Green’s function on the bulk is

Gnp = −gnp

4π
ln(z − z′) − gnp

4π
ln(z̄ − z̄′). (97)

The Green’s function on the boundary is

gmn∂1G
np + Bmn∂0G

np = (
gmn + Bmn

)
∂zG

np + (
gmn − Bmn

)
∂z̄G

np = 0. (98)

The solution is

Gnp =Hnp ln | z − z′ | +1

2
(g + B)nq(g − B)qwHwp ln | z + z̄′ |

+ 1

2
(g − B)nq(g + B)qwHwp ln(z̄ + z′) |z=−z̄, z′=−z̄′ . (99)

The counter term is

1

2

∫
dσ 0 �m∂0X

m, (100)

where

�m ≡ lim
ε→0

Gnp(ε ≡ σ 0 − σ 0′)∂nBpm. (101)

Therefore, the β function is

βm = −
(
Hnp + 1

2
(g + B)nq(g − B)qwHwp + 1

2
(g − B)nq(g + B)qwHwp

)
∂nBpm

= −2

((
Hyz

)−1
)np

∂nBpm. (102)

Multiplying 
((

Hyz

)−1
)

at both sides, we obtain

((
Hyz

)−1
)mn

βn = 2

{
∂p

[((
Hyz

)−1
)mn

Bnp

]

−
((

Hyz

)−1
)mx

Hx
w∂tBwq

((
Hyz

)−1
)qp

Hp
t

}
. (103)

The equation of motion of the DBI model is equivalent to

√
det(g + B)

((
Hyz

)−1
)mn

βn = 0. (104)

Although we do not show the non-constant background case, it should be consistent with the 
ordinary sigma model. We can follow [49] to obtain the massless closed string theory from the 
bulk.
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5.3. Quantum equivalence with the strong constraints

We show that this double sigma model with the strong constraints can be quantum equivalence 
with the ordinary sigma model. We integrate out the dual coordinates, then we obtain the same 
ordinary sigma model. When we do Gaussian integration, the result of the integration on the 
exponent is equivalent to using

∂1X̃p = gpn∂0X
n + Bpn∂1X

n. (105)

Then we integrate out the dual coordinates:

1

2
∂1X

m

(
g − Bg−1B

)
mn

∂1X
n + ∂1X

m

(
Bg−1

)
m

n∂1X̃n + 1

2
∂1X̃m

(
g−1

)mn

∂1X̃
n

− ∂1X̃m∂0X
m

= 1

2
∂1X

m

(
g − Bg−1B

)
mn

∂1X
n + 1

2
∂1X

m

(
Bg−1

)
m

n∂1X̃n − 1

2
∂1X̃m∂0X

m

= 1

2
∂1X

m

(
g − Bg−1B

)
mn

∂1X
n + 1

2
∂1X

mBmn∂0X
n + 1

2
∂1X

m

(
Bg−1B

)
mn

∂1X
n

− 1

2
∂0X

mgmn∂0X
n + 1

2
∂1X

mBmn∂0X
n

= −1

2
∂0X

mgmn∂0X
n + 1

2
∂1X

mgmn∂1X
n + ∂1X

mBmn∂0X
n. (106)

Then we discuss about the measure. When we perform the Gaussian integration, we have a 
non-trivial determinant term. The measure of the double sigma model∫

DXA (107)

becomes∫
DXm

√
detg ≡

∫
D′Xm (108)

when we integrate out the dual coordinates. We obtain the diffeomorphism invariant measure 
(D′Xm) with shift symmetry. This measure exactly satisfies suitable conditions in the ordinary 
sigma model. This measure term has some interesting observations. The double sigma model 
with the global O(D, D) invariant measure becomes the diffeomorphism invariant measure after 
we impose the strong constraints and integrate out the dual coordinates. This results may imply 
that restoration of diffeomorphism on the double space should change the measure. Therefore, 
the double sigma model with diffeomorphism symmetry may come from adding one more metric 
field. The consistency condition is that we choose a gauge fixing to go back to the double sigma 
model with an O(D, D) symmetry. Although we need to have one more metric field from this 
thought, we can have the gauge symmetry. It possibly shed the light on defining a local symmetry 
on the double space.

We integrate out the dual coordinates to obtain the quantum equivalence with the ordinary 
sigma model. Alternatively, we can integrate out the ordinary coordinates with ∂M = 0. Then 
we obtain the dual sigma model (replacing the ordinary coordinates by the dual coordinates and 
using the non-commutative variables in the ordinary sigma model). We find the same situation in 
the generalized metric formulation at low-energy level. This result shows that if we use the strong 
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constraints, the role of the dual coordinates is like an auxiliary field. The double sigma model 
only gives us new understanding about the duality. Without considering the duality, double geom-
etry with the strong constraints only contains the same information as the ordinary sigma model. 
However, double geometry lets us to redefine the T-duality rule by enlarging from the O(d, d) to 
the O(D, D) structure. It possibly gives us some connection about the non-commutative geom-
etry and the manifest T-duality. In this double sigma model, we redefine the generalized metric. 
From this redefinition, we have a one-form gauge field on the bulk. This term does not have 
contributions with the strong constraints on the bulk. The interesting issue is that the one-form 
gauge symmetry still remains without using the strong constraints. The Seiberg–Witten map of 
the open string theory is based on the one-form gauge symmetry. From this point of view, we 
should have the Moyal product on the bulk in the case of the constant background. Although 
this one-form gauge potential does not have contributions in the double sigma model with the 
strong constraints. This one-form gauge potential enhance the symmetry structure to define the 
non-commutative geometry of closed string theory. We leave this interesting subject in the future.

6. Discussion and conclusion

We discuss boundary conditions and formulate the new double sigma model by combining the 
field strength and antisymmetric background field. This paper should be the first one to discuss 
the double geometry with boundary conditions. The first method is the double gauge fields. We 
double gauge fields on the boundary. Then this theory is fully O(D, D) invariant. The O(D, D)

invariance was broken down due to the boundary conditions without doubling coordinates. After 
that, we compute the one-loop β function to obtain the DBI-like action. The difference between 
the DBI-like and DBI theories is that the gauge fields are doubled in the DBI-like case, but 
not in the DBI case. If we want to obtain the DBI action, we can let the dual gauge field be 
a constant. The generalized metric also appears in the action. The generalized metric govern 
the manifest T -duality rule and equivalence between the closed and open string parameters. 
The double gauge fields possibly be helpful in the manifest electric–magnetic duality. On the 
flat background, the electric–magnetic duality is equivalent to exchanging electric and magnetic 
fields. This situation is the same as the double gauge fields. At the end of the double gauge 
fields, we show the non-commutative relation at the semi-classical level. The non-commutativity 
exists in double coordinates and relies on the field strength. We also use the projectors to realize 
different boundary conditions on σ 1-direction. In this part, we only show conditions for the 
projectors. Because the projectors are not invertible, it causes a problem in considering generic 
cases for the one-loop β function. However, we can choose a particular projector to go back 
to the DBI action. The calculation is the same as [44]. Then we extend our understanding for 
the ordinary boundary conditions. We combine the field strength and antisymmetric background 
field to reconstruct a double sigma model. We show the classical equivalence and implement the 
self-duality relation at the off-shell level. At the end of the double sigma model, we check the 
one-loop β function for the constant background fields and integrate out the dual coordinates to 
obtain the ordinary sigma model.

Double gauge fields should be an idea framework to consider the manifest electric–magnetic 
duality. Although it is still far from solving this problem, we already show how to realize it in 
the case of the flat background. The electric–magnetic duality of the non-abelian group is still 
not understood at this stage. We want to use the picture of the doubled gauge fields to probe the 
electric–magnetic duality of the non-abelian group. It should teach us more about the multiple 
M5-brane theory.
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We construct projectors to realize boundary conditions on σ 1-direction. We find the consistent 
DBI action in a particular projector. It should be interesting to study the one-loop β function for 
the general projectors. We believe that different choices of boundary conditions should give dif-
ferent low-energy effective theories. These theories should be beyond the ordinary string theory. 
This method is also valid for the double gauge fields. However, we leave unfinished parts in the 
future.

We construct a double sigma model from combination of the antisymmetric background field 
and field strength. The main difference are the boundary term and self-duality relation. This 
double sigma model do not have boundary term, but it has the consistent boundary conditions 
and equations of motion with the self-duality relation and strong constraints. This consistency 
comes from the modification of the self-duality relation. The field strength goes into the self-
duality relation. It explains why we do not have the boundary term. The old double sigma model 
does not need the self-duality relation on the boundary, but this new double sigma model needs. 
We can say that the old double sigma model is a simplified version of this new double sigma 
model. This double sigma model naively shows that the bulk term has the effects of the one-form 
gauge field. But we can show that the effects of the one-form gauge field only appear in the 
boundary term at classical and quantum level with the strong constraints. The calculation of the 
one-loop β function should be harder than the ordinary string theory. Furthermore, we show that 
this double sigma model is calculable and we also get the consistent answers. The elements of 
the double sigma model are the full O(D, D) elements, but it does not have the full O(D, D)

invariance because the boundary conditions break the O(D, D) invariance. If we want to have 
the O(D, D) boundary conditions, we need to do similar construction with the double gauge 
fields. The gauge symmetry of the double sigma model is also interesting. Due to the combina-
tion of the antisymmetric background and field strength, we have the one-form gauge symmetry 
without using the strong constraints. It implies that we should have the Moyal product on the 
bulk. The non-commutative description of the open string theory is an economic way to obtain 
background effects to all orders. If we can find the Seiberg–Witten map explicitly, we should find 
the background effects to all orders on the bulk. This double sigma model should shed the light 
on obtaining the α′ correction from the non-commutative geometry. Therefore, we can mention 
that double field theory should be beyond rewriting theories. Double field theory gives us a hope 
to develop new methods on calculations.

We show quantum equivalence by integrating out the dual coordinates. The calculation shows 
that this double sigma model with the strong constraints should be exactly equivalent to the 
ordinary sigma model beyond the one-loop level. The dual sigma model can be obtained by 
integrating out the ordinary coordinates with ∂M = 0. We use this way to observe the manifest 
invariance by exchanging the ordinary and dual coordinates as the generalized metric formulation 
at low-energy level. We also obtain a correct diffeomorphism invariant measure. This measure 
term possibly reflect that a diffeomorphism measure on the double space may be constructed by 
adding one more metric field. Then we point out some future directions. It should be interesting 
to study the double sigma model without the strong constraints for quantization and one-loop β
function. Quantization should show the non-commutative relation between the ordinary and dual 
coordinates. It should be interesting to compare open string in the constant background with the 
closed string in the generic background. The most interesting direction of the one-loop β func-
tion should be the low-energy effective action of the double geometry. Then we can find what 
kind of low-energy theory arisen from the fluctuation of the ordinary and dual coordinates. For 
the closed string, it is already done in [49]. The unsolved problem is the boundary part. From 
the generalized metric formulation of the closed string theory without the strong constraints, we 
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should expect that the field strength should have effects on the bulk. Even if we consider constant 
background fields, it is still non-trivial because we need to consider bulk and boundary terms si-
multaneously. We do not have any evidences to show that this low energy effective action can 
be found when considering the fluctuation of the ordinary and dual coordinates simultaneously. 
But we remind that the boundary conditions are not modified from the strong constraints. It 
may imply that the DBI term does not have modification when considering the fluctuation of the 
dual coordinates. However, it should be interesting to give a new perspective for the generalized 
metric formulation [27]. Finally, we also comment that the generalized metric, which is the com-
bination of the field strength and antisymmetric background field. The generalized metric govern 
the semi-classical non-commutative geometry. Then we naively argue that the non-commutative 
geometry of closed and open theory cannot be decoupled in the double geometry. We should 
consider them simultaneously. This structure is not known before because we do not have the 
non-commutative structure on the closed string theory without doubling coordinates. However, 
this double sigma model should be more clearer on this point. It might be a clue that the T-duality 
should be more suitable on the non-commutative space. If we expect that the duality is a way to 
unify our theories, we should define string theory on the non-commutative space.
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