82 research outputs found

    Continuous arterial-venous diahemofiltration and continuous veno-venous diahemofiltration in infants and children

    Full text link
    Continuous arterial-venous diahemofiltration and continuous veno-venous diahemofiltration [CAVH(D)/CVVH(D)] in the infant and pediatric population is increasingly being utilized in the child needing renal replacement therapy (RRT). Difficulties with infant- and pediatric-specific equipment remains a limitation. The availability of techniques and equipment in this unique population is addressed. Use of this form of RRT as opposed to hemodialysis or peritoneal dialysis is discussed. The decision for CAVH(D) or CVVH(D) remains an individual choice.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47833/1/467_2004_Article_BF00868282.pd

    Dialysis and pediatric acute kidney injury: choice of renal support modality

    Get PDF
    Dialytic intervention for infants and children with acute kidney injury (AKI) can take many forms. Whether patients are treated by intermittent hemodialysis, peritoneal dialysis or continuous renal replacement therapy depends on specific patient characteristics. Modality choice is also determined by a variety of factors, including provider preference, available institutional resources, dialytic goals and the specific advantages or disadvantages of each modality. Our approach to AKI has benefited from the derivation and generally accepted defining criteria put forth by the Acute Dialysis Quality Initiative (ADQI) group. These are known as the risk, injury, failure, loss, and end-stage renal disease (RIFLE) criteria. A modified pediatrics RIFLE (pRIFLE) criteria has recently been validated. Common defining criteria will allow comparative investigation into therapeutic benefits of different dialytic interventions. While this is an extremely important development in our approach to AKI, several fundamental questions remain. Of these, arguably, the most important are “When and what type of dialytic modality should be used in the treatment of pediatric AKI?” This review will provide an overview of the limited data with the aim of providing objective guidelines regarding modality choice for pediatric AKI. Comparisons in terms of cost, availability, safety and target group will be reviewed

    Medication errors and patient complications with continuous renal replacement therapy

    Full text link
    Continuous renal replacement therapy (CRRT) is commonly used for renal support in the intensive care unit. While the risk of medication errors in the intensive care unit has been described, errors related specifically to CRRT are unknown. The purpose of this study is to characterize medication errors related to CRRT and compare medication errors that occur with manually compounded solutions versus commercially available solutions. We surveyed three separate internet-based, pediatric list serves that are commonly used for communications for programs utilizing CRRT. Data regarding CRRT practices and medication errors were recorded. Medication errors were graded for degree of severity and compared between programs using manually compounded dialysis solutions versus commercially available dialysis solutions. In a survey with 31 program responses, 18 reported medication errors. Two of the 18 were related to heparin compounding, while 16/18 were due to solution compounding errors. Half of the medication errors were classified as causing harm, two of which were fatal. All medication errors were reported by programs that manually compounded their dialysis solutions. Medication errors related to CRRT are associated with a high degree of severity, including death. Industry-based, commercially available solutions can decrease the occurrence of medication errors due to CRRT.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45869/1/467_2006_Article_49.pd

    Management of toxic ingestions with the use of renal replacement therapy

    Get PDF
    Although rare, renal replacement therapy (RRT) for the treatment of the metabolic, respiratory and hemodynamic complications of intoxications may be required. Understanding the natural clearance of the medications along with their volume of distribution, protein binding and molecular weight will help in understanding the benefit of commencing RRT. This information will aid in choosing the optimal forms of RRT in an urgent setting. Overdose of common pediatric medications are discussed with suggestions on the type of RRT within this educational review

    Chronic dialysis in the infant less than 1 year of age

    Full text link
    Dialysis in the infant carries a mortality rate of 16%. Institution of dialysis may be the result of adequate nutritional intake, but avoidance of nutritional intake should never be seen as a way to prevent dialysis. Increased caloric intake, usually via enteral feeding tubes, is needed for optimal growth in the infant with end-stage renal disease (ESRD) in order to attain adequate nutrition with resulting good growth. “Renal” formulae may be constituted as dilute (as in the polyuric infant) or concentrated (as in the anuric infant) to fit the infants needs. Peritoneal dialysis (PD) is the usual mode of renal replacement therapy (97%), with access via a surgically placed cuffed catheter with attention to the placement of the exit site in order to avoid fecal or urinary contamination. PD volumes of 30–40 ml/kg per pass or 800–1,200 ml/m 2 per pass usually result in dialysis adequacy. Additional dietary sodium (3–5 mEq/kg per day) and protein (3–4 g/kg per day) are needed, due to sodium and protein losses in the dialysate. Protein losses are associated with significant infectious morbidity and nonresponsiveness to routine immunizations. Hemodialysis (HD) can be performed either as single- or dual-needle access that have minimal dead space (less then 2 ml) and recirculation rate (less then 5%). Attnetion to extracorporeal blood volume (<10% of intravascular volume), blood flow rates (3–5 ml/kg per min), heparinization (activated clotting times), ultrafiltration (ultrafiltration monitor), and temperature control is imperative during each treatment. Because infants' nutrition is mostly fluid, HD may be needed 4–6 days/week (especially in the oligoanuric infant) to avoid excessive volume overload between treatments. At the end of the treatment a slow blood return with minimal saline rinse is needed to avoid hemodynamic compromise. Infant dialysis, although technically challenging with a significant morbidity and mortality rate, can be safely carried out in the infant with ESRD but requires infant-specific equipment and trained personnel.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47836/1/467_2004_Article_BF00867678.pd

    Surveillance biopsies in children post-kidney transplant

    Get PDF
    Surveillance biopsies are increasingly used in the post-transplant monitoring of pediatric renal allograft recipients. The main justification for this procedure is to diagnose early and presumably modifiable acute and chronic renal allograft injury. Pediatric recipients are theoretically at increased risk for subclinical renal allograft injury due to their relatively large adult-sized kidneys and their higher degree of immunological responsiveness. The safety profile of this procedure has been well investigated. Patient morbidity is low, with macroscopic hematuria being the most common adverse event. No patient deaths have been attributed to this procedure. Longitudinal surveillance biopsy studies have revealed a substantial burden of subclinical immunological and non-immunological injury, including acute cellular rejection, interstitial fibrosis and tubular atrophy, microvascular lesions and transplant glomerulopathy. The main impediment to the implementation of surveillance biopsies as the standard of care is the lack of demonstrable benefit of early histological detection on long-term outcome. The considerable debate surrounding this issue highlights the need for multicenter, prospective, and randomized studies
    corecore