270 research outputs found
Transition to superfluid turbulence governed by an intrinsic parameter
Hydrodynamic flow in both classical and quantum fluids can be either laminar
or turbulent. To describe the latter, vortices in turbulent flow are modelled
with stable vortex filaments. While this is an idealization in classical
fluids, vortices are real topologically stable quantized objects in
superfluids. Thus superfluid turbulence is thought to hold the key to new
understanding on turbulence in general. The fermion superfluid 3He offers
further possibilities owing to a large variation in its hydrodynamic
characteristics over the experimentally accessible temperatures. While studying
the hydrodynamics of the B phase of superfluid 3He, we discovered a sharp
transition at 0.60Tc between two regimes, with regular behaviour at
high-temperatures and turbulence at low-temperatures. Unlike in classical
fluids, this transition is insensitive to velocity and occurs at a temperature
where the dissipative vortex damping drops below a critical limit. This
discovery resolves the conflict between existing high- and low-temperature
measurements in 3He-B: At high temperatures in rotating flow a vortex loop
injected into superflow has been observed to expand monotonically to a single
rectilinear vortex line, while at very low temperatures a tangled network of
quantized vortex lines can be generated in a quiescent bath with a vibrating
wire. The solution of this conflict reveals a new intrinsic criterion for the
existence of superfluid turbulence.Comment: Revtex file; 5 pages, 2 figure
- …
