2,226 research outputs found

    Furfurylamines from biomass: Transaminase catalysed upgrading of furfurals

    Get PDF
    Furfural is recognised as an attractive platform molecule for the production of solvents, plastics, resins and fuel additives. Furfurylamines have many applications as monomers in biopolymer synthesis and for the preparation of pharmacologically active compounds, although preparation via traditional synthetic routes is not straightforward due to by-product formation and sensitivity of the furan ring to reductive conditions. In this work transaminases (TAms) have been investigated as a mild sustainable method for the amination of furfural and derivatives to access furfurylamines. Preliminary screening with a recently reported colorimetric assay highlighted that a range of furfurals were readily accepted by several transaminases and the use of different amine donors was then investigated. Multistep synthetic routes were required to synthesise furfurylamine derivatives for use as analytical standards, highlighting the benefits of using a one step biocatalytic route. To demonstrate the potential of using TAms for the production of furfurals, the amination of selected compounds was then investigated on a preparative scale

    Direct Conversion of Hydrazones to Amines using Transaminases

    Get PDF
    Transaminase enzymes (TAms) have been widely used for the amination of aldehydes and ketones, often resulting in optically pure products. In this work, transaminases were directly reacted with hydrazones in a novel approach to form amine products. Several substrates were investigated, including those with furan and phenyl moieties. It was determined that the amine yields increased when an additional electrophile was added to the reaction mixture, suggesting that they can sequester the hydrazine released in the reaction. Pyridoxal 5’-phosphate (PLP), a cofactor for transaminases, and polyethylene glycol (PEG)-aldehydes were both found to increase the yield of amine formed. Notably, the amination of (S)-(−)-1-amino-2-(methoxymethyl)pyrrolidine (SAMP) hydrazones gave promising results as a method to form chiral β-substituted amines in good yield

    Aminopolyols from Carbohydrates: Amination of Sugars and Sugar‐Derived Tetrahydrofurans with Transaminases

    Get PDF
    Carbohydrates are the major component of biomass and have unique potential as a sustainable source of building blocks for chemicals, materials, and biofuels because of their low cost, ready availability, and stereochemical diversity. With a view to upgrading carbohydrates to access valuable nitrogen‐containing sugar‐like compounds such as aminopolyols, biocatalytic aminations using transaminase enzymes (TAms) have been investigated as a sustainable alternative to traditional synthetic strategies. Demonstrated here is the reaction of TAms with sugar‐derived tetrahydrofuran (THF) aldehydes, obtained from the regioselective dehydration of biomass‐derived sugars, to provide access to cyclic aminodiols in high yields. In a preliminary study we have also established the direct transamination of sugars to give acyclic aminopolyols. Notably, the reaction of the ketose d‐fructose proceeds with complete stereoselectivity to yield valuable aminosugars in high purity

    One-pot, two-step transaminase and transketolase synthesis of L-gluco-heptulose from L-arabinose

    Get PDF
    The use of biocatalysis for the synthesis of high value added chemical building blocks derived from biomass is becoming an increasingly important application for future sustainable technologies. The synthesis of a higher value chemical from L-arabinose, the predominant monosaccharide obtained from sugar beet pulp, is demonstrated here via a transketolase and transaminase coupled reaction. Thermostable transketolases derived from Deinococcus geothermalis and Dei nococcus radiodurans catalysed the synthesis of L-gluco-heptulose from L-arabinose and β-hydroxypyruvate at elevated temperatures with high conversions. β-Hydroxypyruvate, a commercially expensive compound used in the transketolase reaction, was generated in situ from L-serine and ι-ketoglutaric acid via a thermostable transaminase, also from Deinococcus geothermalis. The two steps were investigated and implemented in a one-pot system for the sustainable and efficient production of L-gluco-heptulose

    Engineering transketolase to accept both unnatural donor and acceptor substrates and produce α‐hydroxyketones

    Get PDF
    A narrow substrate range is a major limitation in exploiting enzymes more widely as catalysts in synthetic organic chemistry. For enzymes using two substrates, the simultaneous optimisation of both substrate specificities is also required for the rapid expansion of accepted substrates. Transketolase (TK) catalyses the reversible transfer of a C2‐ketol unit from a donor substrate to an aldehyde acceptor and suffers the limitation of narrow substrate scope for industrial applications. Herein, TK from Escherichia coli was engineered to accept both pyruvate, as a novel donor substrate, and unnatural acceptor aldehydes, including propanal, pentanal, hexanal and 3‐formylbenzoic acid (FBA). Twenty single‐mutant variants were first designed and characterised experimentally. Beneficial mutations were then recombined to construct a small library. Screening of this library identified the best variant with a 9.2‐fold improvement in the yield towards pyruvate and propionaldehyde, relative to wild‐type (WT). Pentanal and hexanal were used as acceptors to determine stereoselectivities of the reactions, which were found to be higher than 98% enantiomeric excess (ee) for the S configuration. Three variants were identified to be active for the reaction between pyruvate and 3‐FBA. The best variant was able to convert 47% of substrate into product within 24 h, whereas no conversion was observed for WT. Docking experiments suggested a cooperation between the mutations responsible for donor and acceptor recognition, which would promote the activity towards both the acceptor and donor. The variants obtained have the potential to be used for developing catalytic pathways to a diverse range of high‐value products

    Data on a thermostable enzymatic one-pot reaction for the production of a high-value compound from L-arabinose

    Get PDF
    The dataset presented in this article is related to the research article entitled “One-pot, two-step transaminase and transketolase synthesis of l-gluco-heptulose from l-arabinose” (Bawn et al., 2018 in press) [1]. This article presents data on initial experiments that were carried out to investigate new thermostable transketolase (TK) activities with l-arabinose. Transaminase (TAm) sequences from an in-house library of thermophilic strains were analyzed to compare homologies to characterized TAms with desired activity. DNA and amino acid sequences are presented for all the enzymes investigated. Calibration curves for products of the TK and TAm reactions are also presented along with chromatographic analysis of the various one-pot reactions

    Dimensionality and dynamics in the behavior of C. elegans

    Get PDF
    A major challenge in analyzing animal behavior is to discover some underlying simplicity in complex motor actions. Here we show that the space of shapes adopted by the nematode C. elegans is surprisingly low dimensional, with just four dimensions accounting for 95% of the shape variance, and we partially reconstruct "equations of motion" for the dynamics in this space. These dynamics have multiple attractors, and we find that the worm visits these in a rapid and almost completely deterministic response to weak thermal stimuli. Stimulus-dependent correlations among the different modes suggest that one can generate more reliable behaviors by synchronizing stimuli to the state of the worm in shape space. We confirm this prediction, effectively "steering" the worm in real time.Comment: 9 pages, 6 figures, minor correction
    • …
    corecore