8 research outputs found

    Interactions between Casein Kinase Iε (CKIε) and Two Substrates from Disparate Signaling Pathways Reveal Mechanisms for Substrate-Kinase Specificity

    Get PDF
    Members of the Casein Kinase I (CKI) family of serine/threonine kinases regulate diverse biological pathways. The seven mammalian CKI isoforms contain a highly conserved kinase domain and divergent amino- and carboxy-termini. Although they share a preferred target recognition sequence and have overlapping expression patterns, individual isoforms often have specific substrates. In an effort to determine how substrates recognize differences between CKI isoforms, we have examined the interaction between CKIepsilon and two substrates from different signaling pathways.CKIepsilon, but not CKIalpha, binds to and phosphorylates two proteins: Period, a transcriptional regulator of the circadian rhythms pathway, and Disheveled, an activator of the planar cell polarity pathway. We use GST-pull-down assays data to show that two key residues in CKIalpha's kinase domain prevent Disheveled and Period from binding. We also show that the unique C-terminus of CKIepsilon does not determine Dishevelled's and Period's preference for CKIepsilon nor is it essential for binding, but instead plays an auxillary role in stabilizing the interactions of CKIepsilon with its substrates. We demonstrate that autophosphorylation of CKIepsilon's C-terminal tail prevents substrate binding, and use mass spectrometry and chemical crosslinking to reveal how a phosphorylation-dependent interaction between the C-terminal tail and the kinase domain prevents substrate phosphorylation and binding.The biochemical interactions between CKIepsilon and Disheveled, Period, and its own C-terminus lead to models that explain CKIepsilon's specificity and regulation

    The Role of Maternally Acquired Antibody in Providing Protective Immunity Against Nontyphoidal Salmonella in Urban Vietnamese Infants: A Birth Cohort Study

    Get PDF
    Background: Nontyphoidal Salmonella (NTS) organisms are a major cause of gastroenteritis and bacteremia, but little is known about maternally acquired immunity and natural exposure in infant populations residing in areas where NTS disease is highly endemic. Methods: We recruited 503 pregnant mothers and their infants (following delivery) from urban areas in Vietnam and followed infants until they were 1 year old. Exposure to the dominant NTS serovars, Salmonella enterica serovars Typhimurium and Enteritidis, were assessed using lipopolysaccharide (LPS) O antigen-specific antibodies. Antibody dynamics, the role of maternally acquired antibodies, and NTS seroincidence rates were modeled using multivariate linear risk factor models and generalized additive mixed-effect models. Results: Transplacental transfer of NTS LPS-specific maternal antibodies to infants was highly efficient. Waning of transplacentally acquired NTS LPS-specific antibodies at 4 months of age left infants susceptible to Salmonella organisms, after which they began to seroconvert. High seroincidences of S. Typhimurium and S. Enteritidis LPS were observed, and infants born with higher anti-LPS titers had greater plasma bactericidal activity and longer protection from seroconversion. Conclusions: Although Vietnamese infants have extensive exposure to NTS, maternally acquired antibodies appear to play a protective role against NTS infections during early infancy. These findings suggest that prenatal immunization may be an appropriate strategy to protect vulnerable infants from NTS disease

    Delta opioid receptors and cardioprotection

    No full text
    The opioid receptor family, with associated endogenous ligands, has numerous roles throughout the body. Moreover, the delta opioid receptor (DORs) has various integrated roles within the physiological systems, including the cardiovascular system. While DORs are important modulators of cardiovascular autonomic balance, they are well-established contributors to cardioprotective mechanisms. Both endogenous and exogenous opioids acting upon DORs have roles in myocardial hibernation and protection against ischaemia-reperfusion (I-R) injury. Downstream signalling mechanisms governing protective responses alternate, depending on the timing and duration of DOR activation. The following review describes models and mechanisms of DOR-mediated cardioprotection, the impact of co-morbidities and challenges for clinical translation

    Extracellular ATP and other nucleotides—ubiquitous triggers of intercellular messenger release

    No full text
    corecore