6 research outputs found

    Spatial ecology of the steephead parrotfish (Chlorurus microrhinos): an evaluation using acoustic telemetry

    No full text
    Herbivory and other ecosystem processes are widely accepted as important factors in maintaining coral reef resilience. While the spatial scales over which these processes occur have been evaluated, the spatial ecology of individual taxa responsible for shaping these processes is almost entirely unknown. This study combined acoustic telemetry and ecological assessments to evaluate the movement patterns and feeding range of a functionally important coral reef fish, Chlorurus microrhinos (f. Labridae). The diurnal home range and feeding areas of C. microrhinos, on Orpheus Island, Great Barrier Reef, were quantified using active acoustic telemetry. The average diurnal home range of C. microrhinos was 7,830 m2 ± 940 (SE). Core areas of activity (50% kernel utilization distributions) were relatively small, encompassing approximately 22% of an individual's home range (1,690 m2 ± 220). Core areas exhibited greater topographic complexity. C. microrhinos may select these areas because of decreased predation risk. Feeding intensities were not homogenous throughout the home range. Core areas were found to have a greater number of feeding scars and are thus exposed to increased bioerosion and algal removal by C. microrhinos. While important in shaping key ecosystem processes, the ecosystem impact of individual C. microrhinos in Pioneer Bay appears to be restricted to small areas within a narrow band along the reef crest

    Where Wolves Kill Moose: The Influence of Prey Life History Dynamics on the Landscape Ecology of Predation

    No full text
    The landscape ecology of predation is well studied and known to be influenced by habitat heterogeneity. Little attention has been given to how the influence of habitat heterogeneity on the landscape ecology of predation might be modulated by life history dynamics of prey in mammalian systems. We demonstrate how life history dynamics of moose (Alces alces) contribute to landscape patterns in predation by wolves (Canis lupus) in Isle Royale National Park, Lake Superior, USA. We use pattern analysis and kernel density estimates of moose kill sites to demonstrate that moose in senescent condition and moose in prime condition tend to be wolf-killed in different regions of Isle Royale in winter. Predation on senescent moose was clustered in one kill zone in the northeast portion of the island, whereas predation on prime moose was clustered in 13 separate kill zones distributed throughout the full extent of the island. Moreover, the probability of kill occurrence for senescent moose, in comparison to prime moose, increased in high elevation habitat with patches of dense coniferous trees. These differences can be attributed, at least in part, to senescent moose being more vulnerable to predation and making different risk-sensitive habitat decisions than prime moose. Landscape patterns emerging from prey life history dynamics and habitat heterogeneity have been observed in the predation ecology of fish and insects, but this is the first mammalian system for which such observations have been made
    corecore