23 research outputs found

    From quantum fusiliers to high-performance networks

    Full text link
    Our objective was to design a quantum repeater capable of achieving one million entangled pairs per second over a distance of 1000km. We failed, but not by much. In this letter we will describe the series of developments that permitted us to approach our goal. We will describe a mechanism that permits the creation of entanglement between two qubits, connected by fibre, with probability arbitrarily close to one and in constant time. This mechanism may be extended to ensure that the entanglement has high fidelity without compromising these properties. Finally, we describe how this may be used to construct a quantum repeater that is capable of creating a linear quantum network connecting two distant qubits with high fidelity. The creation rate is shown to be a function of the maximum distance between two adjacent quantum repeaters.Comment: 2 figures, Comments welcom

    Towards Quantum Repeaters with Solid-State Qubits: Spin-Photon Entanglement Generation using Self-Assembled Quantum Dots

    Full text link
    In this chapter we review the use of spins in optically-active InAs quantum dots as the key physical building block for constructing a quantum repeater, with a particular focus on recent results demonstrating entanglement between a quantum memory (electron spin qubit) and a flying qubit (polarization- or frequency-encoded photonic qubit). This is a first step towards demonstrating entanglement between distant quantum memories (realized with quantum dots), which in turn is a milestone in the roadmap for building a functional quantum repeater. We also place this experimental work in context by providing an overview of quantum repeaters, their potential uses, and the challenges in implementing them.Comment: 51 pages. Expanded version of a chapter to appear in "Engineering the Atom-Photon Interaction" (Springer-Verlag, 2015; eds. A. Predojevic and M. W. Mitchell
    corecore