58 research outputs found

    Rapid Turnover of 2-LTR HIV-1 DNA during Early Stage of Highly Active Antiretroviral Therapy

    Get PDF
    BACKGROUND: Despite prolonged treatment with highly active antiretroviral therapy (HAART), the infectious HIV-1 continues to replicate and resides latently in the resting memory CD4+ T lymphocytes, which blocks the eradication of HIV-1. The viral persistence of HIV-1 is mainly caused by its proviral DNA being either linear nonintegrated, circular nonintegrated, or integrated. Previous reports have largely focused on the dynamics of HIV-1 DNA from the samples collected with relatively long time intervals during the process of disease and HAART treatment, which may have missed the intricate changes during the intervals in early treatment. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the dynamics of HIV-1 DNA in patients during the early phase of HARRT treatment. Using optimized real time PCR, we observed significant changes in 2-LTR during the first 12-week of treatment, while total and integrated HIV-1 DNA remained stable. The doubling time and half-life of 2-LTR were not correlated with the baseline and the rate of changes in plasma viral load and various CD4+ T-cell populations. Longitudinal analyses on 2-LTR sequences and plasma lipopolysaccharide (LPS) levels did not reveal any significant changes in the same treatment period. CONCLUSIONS/SIGNIFICANCE: Our study revealed the rapid changes in 2-LTR concentration in a relatively large number of patients during the early HAART treatment. The rapid changes indicate the rapid infusion and clearance of cells bearing 2-LTR in the peripheral blood. Those changes are not expected to be caused by the blocking of viral integration, as our study did not include the integrase inhibitor raltegravir. Our study helps better understand the dynamics of HIV-DNA and its potential role as a biomarker for the diseases and for the treatment efficacy of HAART

    SnS44-, SbS43-, and AsS33- Metal Chalcogenide Surface Ligands: Couplings to Quantum Dots, Electron Transfers, and All-Inorganic Multi layered Quantum Dot Sensitized Solar Cells

    No full text
    Three inorganic capping ligands (ICLs) for quantum dots (QDs), SnS44-, SbS43- and AsS33-, were synthesized and the energy levels determined. Proximity between the ICL LUMO and QD conduction level governed the electronic couplings such as absorption shift upon ligand exchange, and electron transfer rate to TiO2. QD-sensitized solar cells were fabricated, using the ICL-QDs and also using QD multilayers layer-by-layer assembled by bridging coordinations, and studied as a function of the ICL ligand and the number of QD layers.111310sciescopu

    Twenty-five years of low-cost solar cells

    No full text

    A case control study on passive smoking and childhood hospitalization due to respiratory illness

    No full text
    Conferenc Theme: Transformation in Hospital ServicesAbstrac

    Giant second-harmonic generation in ferroelectric NbOI2

    No full text
    Implementing nonlinear optical components in nanoscale photonic devices is challenged by phase-matching conditions requiring thicknesses in the order of hundreds of wavelengths, and is disadvantaged by the short optical interaction depth of nanometre-scale materials and weak photon–photon interactions. Here we report that ferroelectric NbOI2 nanosheets exhibit giant second-harmonic generation with conversion efficiencies that are orders of magnitude higher than commonly reported nonlinear crystals. The nonlinear response scales with layer thickness and is strain- and electrical-tunable; a record >0.2% absolute SHG conversion efficiency and an effective nonlinear susceptibility χ(2)eff in the order of 10−9 m V−1 are demonstrated at an average pump intensity of 8 kW cm–2. Due to the interplay between anisotropic polarization and excitonic resonance in NbOI2, the spatial profile of the polarized SHG response can be tuned by the excitation wavelength. Our results represent a new paradigm for ultrathin, efficient nonlinear optical components
    corecore