15 research outputs found

    Type I IFN and TNFα cross-regulation in immune-mediated inflammatory disease: basic concepts and clinical relevance

    Get PDF
    A cross-regulation between type I IFN and TNFα has been proposed recently, where both cytokines are hypothesized to counteract each other. According to this model, different autoimmune diseases can be viewed as disequilibrium between both cytokines. As this model may have important clinical implications, the present review summarizes and discusses the currently available clinical evidence arguing for or against the proposed cross-regulation between TNFα and type I IFN. In addition, we review how this cross-regulation works at the cellular and molecular levels. Finally, we discuss the clinical relevance of this proposed cross-regulation for biological therapies such as type I IFN or anti-TNFα treatment

    Deficiency of TLR4 homologue RP105 aggravates outward remodeling in a murine model of arteriovenous fistula failure

    Get PDF
    Abstract Arteriovenous access dysfunction is a major cause of morbidity for hemodialysis patients. The pathophysiology of arteriovenous fistula (AVF) maturation failure is associated with inflammation, impaired outward remodeling (OR) and intimal hyperplasia. RP105 is a critical physiologic regulator of TLR4 signaling in numerous cell types. In the present study, we investigated the impact of RP105 on AVF maturation, and defined cell-specific effects of RP105 on macrophages and vascular smooth muscle cells (VSMCs). Overall, RP105−/− mice displayed a 26% decrease in venous OR. The inflammatory response in RP105−/− mice was characterized by accumulation of anti-inflammatory macrophages, a 76% decrease in pro- inflammatory macrophages, a 70% reduction in T-cells and a 50% decrease in MMP-activity. In vitro, anti-inflammatory macrophages from RP105−/− mice displayed increased IL10 production, while MCP1 and IL6 levels secreted by pro-inflammatory macrophages were elevated. VSMC content in RP105−/− AVFs was markedly decreased. In vitro, RP105−/− venous VSMCs proliferation was 50% lower, whereas arterial VSMCs displayed a 50% decrease in migration, relative to WT. In conclusion, the impaired venous OR in RP105−/− mice could result from of a shift in both macrophages and VSMCs towards a regenerative phenotype, identifying a novel relationship between inflammation and VSMC function in AVF maturation

    Nitric Oxide Resistance Reduces Arteriovenous Fistula Maturation in Chronic Kidney Disease in Rats

    No full text
    BACKGROUND:Autologous arteriovenous (AV) fistulas are the first choice for vascular access but have a high risk of non-maturation due to insufficient vessel adaptation, a process dependent on nitric oxide (NO)-signaling. Chronic kidney disease (CKD) is associated with oxidative stress that can disturb NO-signaling. Here, we evaluated the influence of CKD on AV fistula maturation and NO-signaling. METHODS:CKD was established in rats by a 5/6th nephrectomy and after 6 weeks, an AV fistula was created between the carotid artery and jugular vein, which was followed up at 3 weeks with ultrasound and flow assessments. Vessel wall histology was assessed afterwards and vasoreactivity of carotid arteries was studied in a wire myograph. The soluble guanylate cyclase (sGC) activator BAY 60-2770 was administered daily to CKD animals for 3 weeks to enhance fistula maturation. RESULTS:CKD animals showed lower flow rates, smaller fistula diameters and increased oxidative stress levels in the vessel wall. Endothelium-dependent relaxation was comparable but vasorelaxation after sodium nitroprusside was diminished in CKD vessels, indicating NO resistance of the NO-receptor sGC. This was confirmed by stimulation with BAY 60-2770 resulting in increased vasorelaxation in CKD vessels. Oral administration of BAY 60-2770 to CKD animals induced larger fistula diameters, however; flow was not significantly different from vehicle-treated CKD animals. CONCLUSIONS:CKD induces oxidative stress resulting in NO resistance that can hamper AV fistula maturation. sGC activators like BAY 60-2770 could offer therapeutic potential to increase AV fistula maturation
    corecore