97 research outputs found
Adult B lymphoblastic leukaemia/lymphoma with hypodiploidy (-9) and a novel chromosomal translocation t(7;12)(q22;p13) presenting with severe eosinophilia β case report and review of literature
Patients suffering from adult acute lymphoblastic leukemia are acutely ill and present most commonly with fever, pallor, bleeding, lymphadenopathy, hepatosplenomegaly and presence of lymphoblasts in the peripheral blood and bone marrow. We describe a rare presentation of acute lymphoblastic leukemia, in a young adult male who had vague and minimal symptoms with mild splenomegaly. There was severe eosinophilia along with absence of blasts in the peripheral blood, and 40% blasts with increase in eosinophils in the bone marrow. The blasts were positive for common precursor B cell markers on flow cytometry. The patient had a unique cytogenetic abnormality t(7;12)(q22;p13),-9, not previously described in acute lymphoblastic leukemia. He was categorized as poor risk due to failure to achieve complete remission after induction with UK ALL XII chemotherapy
CD27 distinguishes two phases in bone marrow infiltration of splenic marginal zone lymphoma
Aims: To investigate CD27 expression in splenic marginal zone lymphoma (SMZL), an indolent low-grade B-cell lymphoma with constant involvement of the bone marrow, especially with an intrasinusoidal pattern. It is not clear if the neoplastic clone is composed of virgin or somatically mutated B cells. CD27 is reported to be a hallmark of memory B cells. Methods and results: We evaluated 64 bone marrow biopsy specimens (BMBs) from 36 patients with SMZL for the expression of CD27. For comparison, splenectomy specimens of patients with traumatic splenic rupture or with SMZL were used. All BMBs showed lymphomatous infiltration. When located in the marrow sinusoids, neoplastic cells were CD27- in all cases and therefore corresponded to naive B cells. In nodular/interstitial infiltration, the cells were CD27+ and therefore corresponded to memory B cells. No difference in immunohistochemical expression of B and T antibodies was found between intrasinusoidal and interstitial/nodular infiltration. CD27 was constantly expressed in the splenic marginal zone of normal spleen, surgically removed for trauma, and in seven out of 10 spleens with SMZL. Conclusion: We propose the existence of two different phases of neoplastic progression with, first, expansion of a virgin B clone in the bone marrow and, following exposure to antigen, a re-colonization of the bone marrow
Stereo-Selectivity of Human Serum Albumin to Enantiomeric and Isoelectronic Pollutants Dissected by Spectroscopy, Calorimetry and Bioinformatics
1βnaphthol (1N), 2βnaphthol (2N) and 8βquinolinol (8H) are general water pollutants. 1N and 2N are the configurational enantiomers and 8H is isoelectronic to 1N and 2N. These pollutants when ingested are transported in the blood by proteins like human serum albumin (HSA). Binding of these pollutants to HSA has been explored to elucidate the specific selectivity of molecular recognition by this multiligand binding protein. The association constants (Kb) of these pollutants to HSA were moderate (104β105 Mβ1). The proximity of the ligands to HSA is also revealed by their average binding distance, r, which is estimated to be in the range of 4.39β5.37 nm. The binding free energy (ΞG) in each case remains effectively the same for each site because of enthalpyβentropy compensation (EEC). The difference observed between ΞCpexp and ΞCpcalc are suggested to be caused by bindingβinduced flexibility changes in the HSA. Efforts are also made to elaborate the differences observed in binding isotherms obtained through multiple approaches of calorimetry, spectroscopy and bioinformatics. We suggest that difference in dissociation constants of pollutants by calorimetry, spectroscopic and computational approaches could correspond to occurrence of different set of populations of pollutants having different molecular characteristics in ground state and excited state. Furthermore, our observation of enhanced binding of pollutants (2N and 8H) in the presence of hemin signifies that ligands like hemin may enhance the storage period of these pollutants in blood that may even facilitate the ill effects of these pollutants
Biological therapy of cancer
Interferons and monoclonal antibodies are among the most promising biological approaches to cancer treatment which have so far been investigated. Both natural and recombinant interferon-alpha preparations have shown activity in a number of trials in hematologic malignancies, even in previously treated patients; activity in solid tumors, however, has been limited. Unconjugated monoclonal antibodies have been safely administered in several small trials and have had therapeutic value on occasion. In spite of a number of remaining problems and questions, monoclonal antibodies and their conjugates seem likely to find a number of distinct roles in cancer treatment; elimination of micrometastases and purging of bone marrow for grafting may be among these roles.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44207/1/10549_2005_Article_BF01886730.pd
Alterations to Melanocortinergic, GABAergic and Cannabinoid Neurotransmission Associated with Olanzapine-Induced Weight Gain
Background/Aim: Second generation antipsychotics (SGAs) are used to treat schizophrenia but can cause serious metabolic side-effects, such as obesity and diabetes. This study examined the effects of low to high doses of olanzapine on appetite/ metabolic regulatory signals in the hypothalamus and brainstem to elucidate the mechanisms underlying olanzapineinduced obesity. Methodology/Results: Levels of pro-opiomelanocortin (POMC), neuropeptide Y (NPY) and glutamic acid decarboxylase (GAD65, enzyme for GABA synthesis) mRNA expression, and cannabinoid CB1 receptor (CB1R) binding density (using [ 3 H]SR-141716A) were examined in the arcuate nucleus (Arc) and dorsal vagal complex (DVC) of female Sprague Dawley rats following 0.25, 0.5, 1.0 or 2.0 mg/kg olanzapine or vehicle (36/day, 14-days). Consistent with its weight gain liability, olanzapine significantly decreased anorexigenic POMC and increased orexigenic NPY mRNA expression in a dose-sensitive manner in the Arc. GAD65 mRNA expression increased and CB1R binding density decreased in the Arc and DVC. Alterations to neurotransmission signals in the brain significantly correlated with body weight and adiposity. The minimum dosage threshold required to induce weight gain in the rat was 0.5 mg/kg olanzapine. Conclusions: Olanzapine-induced weight gain is associated with reduced appetite-inhibiting POMC and increased NPY. This study also supports a role for the CB1R and GABA in the mechanisms underlying weight gain side-effects, possibly b
History of clinical transplantation
The emergence of transplantation has seen the development of increasingly potent immunosuppressive agents, progressively better methods of tissue and organ preservation, refinements in histocompatibility matching, and numerous innovations is surgical techniques. Such efforts in combination ultimately made it possible to successfully engraft all of the organs and bone marrow cells in humans. At a more fundamental level, however, the transplantation enterprise hinged on two seminal turning points. The first was the recognition by Billingham, Brent, and Medawar in 1953 that it was possible to induce chimerism-associated neonatal tolerance deliberately. This discovery escalated over the next 15 years to the first successful bone marrow transplantations in humans in 1968. The second turning point was the demonstration during the early 1960s that canine and human organ allografts could self-induce tolerance with the aid of immunosuppression. By the end of 1962, however, it had been incorrectly concluded that turning points one and two involved different immune mechanisms. The error was not corrected until well into the 1990s. In this historical account, the vast literature that sprang up during the intervening 30 years has been summarized. Although admirably documenting empiric progress in clinical transplantation, its failure to explain organ allograft acceptance predestined organ recipients to lifetime immunosuppression and precluded fundamental changes in the treatment policies. After it was discovered in 1992 that long-surviving organ transplant recipient had persistent microchimerism, it was possible to see the mechanistic commonality of organ and bone marrow transplantation. A clarifying central principle of immunology could then be synthesized with which to guide efforts to induce tolerance systematically to human tissues and perhaps ultimately to xenografts
- β¦