15 research outputs found

    The trophodynamics of Southern Ocean Electrona (Myctophidae) in the Scotia Sea

    Get PDF
    The Scotia Sea is one of the most productive regions of the Southern Ocean, but its surface waters are experiencing a rapid increase in temperature, which may be changing the behaviour and distribution of many myctophids and their prey species. Electrona antarctica and Electrona carlsbergi are two of the most abundant myctophids in the region, but their ecology is poorly understood and their response to ongoing environmental change is difficult to determine. This study investigated spatial and temporal patterns in their abundance, population structure and diets using mid-water trawl nets deployed across the Scotia Sea during spring, summer and autumn. E. antarctica was the most numerically abundant species (0.09–0.21 ind. 1,000 m−3), with greatest concentrations occurring in the sea-ice sectors. E. carlsbergi occurred in more northern regions, comprising densities of 0.02–0.11 ind. 1,000 m−3. There was evidence of seasonal variation in depth distribution, size-related sexual dimorphism and size-specific vertical stratification for both species. Latitudinal trends in sex ratio and female body size were apparent for E. antarctica. Its diet varied between regions, seasons and size classes, but overall, Euphausia superba, Metridia spp. and Themisto gaudichaudii were the dominant prey items. E. carlsbergi appeared not to recruit in the Scotia Sea. Its diet was dominated by copepods, particularly Rhincalanus gigas and Metridia spp., but regional, seasonal and ontogenetic variations were evident. This study contributes to our understanding of how mid-water food webs are structured in the Southern Ocean and their sensitivity to ongoing environmental change

    Age, growth and maximum size of Antarctic notothenioid fish — revisited

    No full text
    The temperature of the Southern Ocean has undergone an overall reduction from about 20 °C to −1.8 °C over the last 55–60 million years. To date, the Southern Ocean is characterized by low temperatures ranging from +3 °C close to the South Polar Frontal Zone to −1.86 °C in the vicinity of the Antarctic continent and a strong seasonality and patchiness of primary productivity

    Eye-Size Variability in Deep-Sea Lanternfishes (Myctophidae): An Ecological and Phylogenetic Study

    Get PDF
    One of the most common visual adaptations seen in the mesopelagic zone (200-1000 m), where the amount of light diminishes exponentially with depth and where bioluminescent organisms predominate, is the enlargement of the eye and pupil area. However, it remains unclear how eye size is influenced by depth, other environmental conditions and phylogeny. In this study, we determine the factors influencing variability in eye size and assess whether this variability is explained by ecological differences in habitat and lifestyle within a family of mesopelagic fishes characterized by broad intra-and interspecific variance in depth range and luminous patterns. We focus our study on the lanternfish family (Myctophidae) and hypothesise that lanternfishes with a deeper distribution and/or a reduction of bioluminescent emissions have smaller eyes and that ecological factors rather than phylogenetic relationships will drive the evolution of the visual system. Eye diameter and standard length were measured in 237 individuals from 61 species of lanternfishes representing all the recognised tribes within the family in addition to compiling an ecological dataset including depth distribution during night and day and the location and sexual dimorphism of luminous organs. Hypotheses were tested by investigating the relationship between the relative size of the eye (corrected for body size) and variations in depth and/or patterns of luminous-organs using phylogenetic comparative analyses. Results show a great variability in relative eye size within the Myctophidae at all taxonomic levels (from subfamily to genus), suggesting that this character may have evolved several times. However, variability in eye size within the family could not be explained by any of our ecological variables (bioluminescence and depth patterns), and appears to be driven solely by phylogenetic relationships
    corecore